zoukankan      html  css  js  c++  java
  • Even and Odd Functions

    subsection{Even and Odd Functions}
    
    For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
    calling the function 	extbf{even}index{even functions} or
    	extbf{odd}index{odd functions}.
    
    An 	extbf{even function} means $f(-x)=f(x)$.
    An example of an even function is the function $f(x)=x^2$.
      egin{figure}[H]
        egin{center}
          egin{tikzpicture}
            egin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              addplot[smooth,red]{x^2};
            end{axis}
          end{tikzpicture}
        end{center}
        caption{$f(x)=x^2$ is an emph{even function}.}
      end{figure}
      An 	extbf{odd function} means $f(-x)=-f(x)$. An example of this is the
      function $f(x)=x^3$.
      egin{figure}[H]
        egin{center}
          egin{tikzpicture}
            egin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              addplot[smooth,red]{x^3};
            end{axis}
          end{tikzpicture}
        end{center}
        caption{$f(x)=x^3$ is an emph{odd function}.}
      end{figure}
    subsection{Surjective, Injective, and Bijective Functions}
    
    
      index{one-to-one}
      index{injective}
      If each $f(x)$ value produced by a function $f$ can only be obtained by one
      unique $x$ value, then we say $f$ is 	extbf{injective}, or
      	extbf{one-to-one}.
    
      $ f: D 	o R $ is injective or one-to-one iff
      [
        forall{(x_1 wedge x_2 in D)}
        ig[f(x_1)=f(x_2)
        	o x_1=x_2ig].
      ]
      egin{remark}
        This also means that for injective functions,
        $ x_1 
    eq x_2 	o f(x_1) 
    eq f(x_2)$.
      end{remark}
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not emph{one-to-one} because
            there are two possible $x$-values that can produce each given
            $y$-value.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is emph{one-to-one} because every
            given $y$-value is mapped from a unique $x$-value.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
      A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
      line at most once.index{horizontal line test}
    
      index{onto}
      index{surjective}
      $f: D 	o R $ is 	extbf{surjective} or 	extbf{onto} iff
        [forall (y in R) exists  (x in D) ig[f(x)=yig]. ]
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not emph{surjective} because
            the values $(-infty, 0)$ are never reached in its range.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is emph{one-to-one} because all $y$ values from $-infty, infty)$ have corresponding $x$-values.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
    
    
        index{bijective}
        A function $f:A 	o B$ is 	extbf{bijective} iff it is emph{both injective and surjective}.
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not bijective.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    xlabel={$x$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is bijective.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    xlabel={$x$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
    
    
    subsection{Graphs} index{graphs}
    
    
      index{graph}
        If $f$ is a function with a domain $D$, then its 	extbf{graph} is the set
        [ Big{ ig( x,f(x) ig) Big | x in D Big},]
        that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
    footnote{Here, the difference between the words emph{graph} and emph{plot} is sometimes confusing. Technically speaking, a emph{graph} is the set defined explicitly here, while a function's emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either emph{graph} or emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.}
    
    
    If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
    This height might be positive or negative, depending on the sign of $f(x)$.
    We use this height relationship to plot functions.
    egin{figure}[H]
        egin{center}
            egin{tikzpicture}
              egin{axis}[
                  ylabel={$f(x)$},
                  xlabel={$x$},
                  axis x line=bottom,
                  axis y line=center,
                  tick align=outside,
                  yticklabels={,,}
                  xticklabels={,,}
                  xtickmax=10,
                ]
                addplot[smooth,red]{x+2};
              end{axis}
            end{tikzpicture}
          caption{A plot of the function $f(x)=x+2$}
        end{center}
      end{figure}
    
  • 相关阅读:
    用VBS脚本查询纯真IP库QQWry.dat(转)
    微软的进程监视器监视进程注册表,文件系统和线程等活动process monitor
    纯真IP库详解(转)
    VBS的开发利器WMI信息绑定参考地址
    VBS去除指定的字符串中的重复项返回重复后的字符串
    WMI中相关的操作说明execquery 或者是instancesof
    VBS字符编码的说明
    VBS中的Asc/AscB/AscW和Chr/ChrB/ChrW函数之间的区别(转)
    随笔我的想法
    关于ANSI字符编码的BUG问题(转)
  • 原文地址:https://www.cnblogs.com/wangshixi12/p/4098075.html
Copyright © 2011-2022 走看看