zoukankan      html  css  js  c++  java
  • Even and Odd Functions

    subsection{Even and Odd Functions}
    
    For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
    calling the function 	extbf{even}index{even functions} or
    	extbf{odd}index{odd functions}.
    
    An 	extbf{even function} means $f(-x)=f(x)$.
    An example of an even function is the function $f(x)=x^2$.
      egin{figure}[H]
        egin{center}
          egin{tikzpicture}
            egin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              addplot[smooth,red]{x^2};
            end{axis}
          end{tikzpicture}
        end{center}
        caption{$f(x)=x^2$ is an emph{even function}.}
      end{figure}
      An 	extbf{odd function} means $f(-x)=-f(x)$. An example of this is the
      function $f(x)=x^3$.
      egin{figure}[H]
        egin{center}
          egin{tikzpicture}
            egin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              addplot[smooth,red]{x^3};
            end{axis}
          end{tikzpicture}
        end{center}
        caption{$f(x)=x^3$ is an emph{odd function}.}
      end{figure}
    subsection{Surjective, Injective, and Bijective Functions}
    
    
      index{one-to-one}
      index{injective}
      If each $f(x)$ value produced by a function $f$ can only be obtained by one
      unique $x$ value, then we say $f$ is 	extbf{injective}, or
      	extbf{one-to-one}.
    
      $ f: D 	o R $ is injective or one-to-one iff
      [
        forall{(x_1 wedge x_2 in D)}
        ig[f(x_1)=f(x_2)
        	o x_1=x_2ig].
      ]
      egin{remark}
        This also means that for injective functions,
        $ x_1 
    eq x_2 	o f(x_1) 
    eq f(x_2)$.
      end{remark}
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not emph{one-to-one} because
            there are two possible $x$-values that can produce each given
            $y$-value.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is emph{one-to-one} because every
            given $y$-value is mapped from a unique $x$-value.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
      A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
      line at most once.index{horizontal line test}
    
      index{onto}
      index{surjective}
      $f: D 	o R $ is 	extbf{surjective} or 	extbf{onto} iff
        [forall (y in R) exists  (x in D) ig[f(x)=yig]. ]
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not emph{surjective} because
            the values $(-infty, 0)$ are never reached in its range.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is emph{one-to-one} because all $y$ values from $-infty, infty)$ have corresponding $x$-values.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
    
    
        index{bijective}
        A function $f:A 	o B$ is 	extbf{bijective} iff it is emph{both injective and surjective}.
    
    egin{figure}[H]
        egin{center}
            subfigure[The function $f(x)=x^2$ is not bijective.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^2$},
                    xlabel={$x$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,red]{x^2};
                end{axis}
              end{tikzpicture}
            }
            hspace{0.2in}%
            subfigure[The function $f(x)=x^3$ is bijective.]
            {
              egin{tikzpicture}
                egin{axis}[
                    ylabel={$f(x)=x^3$},
                    xlabel={$x$},
                    axis x line=bottom,
                    axis y line=center,
                    tick align=outside,
                    yticklabels={,,}
                    xticklabels={,,}
                    xtickmax=10,
                  ]
                  addplot[smooth,blue]{x^3};
                end{axis}
              end{tikzpicture}
            }
        end{center}
      end{figure}
    
    
    subsection{Graphs} index{graphs}
    
    
      index{graph}
        If $f$ is a function with a domain $D$, then its 	extbf{graph} is the set
        [ Big{ ig( x,f(x) ig) Big | x in D Big},]
        that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
    footnote{Here, the difference between the words emph{graph} and emph{plot} is sometimes confusing. Technically speaking, a emph{graph} is the set defined explicitly here, while a function's emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either emph{graph} or emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.}
    
    
    If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
    This height might be positive or negative, depending on the sign of $f(x)$.
    We use this height relationship to plot functions.
    egin{figure}[H]
        egin{center}
            egin{tikzpicture}
              egin{axis}[
                  ylabel={$f(x)$},
                  xlabel={$x$},
                  axis x line=bottom,
                  axis y line=center,
                  tick align=outside,
                  yticklabels={,,}
                  xticklabels={,,}
                  xtickmax=10,
                ]
                addplot[smooth,red]{x+2};
              end{axis}
            end{tikzpicture}
          caption{A plot of the function $f(x)=x+2$}
        end{center}
      end{figure}
    
  • 相关阅读:
    Mycat分布式数据库&.NET链接mysql
    MySQL安装
    Apache 安装配置及开启PHP模块支持
    XSS MSMQ FASTDFS RABBITMQ
    json表单回填(表单反序列化回填值)
    解决80端口被占用
    Oracle for .net & ServiceStack.OrmLite
    MBTiles 离线地图演示
    Java网络编程TCP程序,服务器和客户机交互流程以及基本操作步骤。
    如何使用和理解java的反射机制
  • 原文地址:https://www.cnblogs.com/wangshixi12/p/4098075.html
Copyright © 2011-2022 走看看