zoukankan      html  css  js  c++  java
  • UVA

    Input
    The first line of the input contains the number of the test cases, which is at most 15. The descriptions
    of the test cases follow. The first line of a test case description contains three integers A, B, and C
    (1 ≤ A, B, C ≤ 20). The next lines contain A · B · C numbers, which are the values of garbage pieces.
    Each number does not exceed 2 31 by absolute value. If we introduce coordinates in the parallelepiped
    such that the cell in one corner is (1,1,1) and the cell in the opposite corner is (A, B, C), then the values
    are listed in the order
    (1, 1, 1), (1, 1, 2), . . . , (1, 1, C),
    (1, 2, 1), . . . , (1, 2, C), . . . , (1, B, C),
    (2, 1, 1), . . . , (2, B, C), . . . , (A, B, C).
    The test cases are separated by blank lines.
    Output
    For each test case in the input, output a single integer denoting the maximal value of the new garbage
    heap. Print a blank line between test cases.
    Sample Input
    1
    2 2 2
    -1 2 0 -3 -2 -1 1 5
    Sample Output
    6

    对每一层(z方向)求二维前缀和,再枚举x,y的上下边界,总共是O(n)的复杂度

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    
    #define N 25
    #define ll long long
    
    ll A[N][N][N], T, a, b, c, INF = -1ll << 60, S = INF, s, k;
    
    long long int sum(int x1, int x2, int y1, int y2, int z);
    
    using namespace std;
    
    int main() {
        cin >> T;
        while (T--) {
            cin >> a >> b >> c, S = INF;
            for (int x = 1; x <= a; ++x) {
                for (int y = 1; y <= b; ++y) {
                    for (int z = 1; z <= c; ++z) {
                        cin >> A[x][y][z];
                        A[x][y][z] += A[x - 1][y][z] + A[x][y - 1][z] - A[x - 1][y - 1][z];
                    }
                }
            }
            for (int x1 = 1; x1 <= a; ++x1) {
                for (int x2 = x1; x2 <= a; ++x2) {
                    for (int y1 = 1; y1 <= b; ++y1) {
                        for (int y2 = y1; y2 <= b; ++y2) {
                            s = INF, k = 0;
                            for (int z = 1; z <= c; ++z) {
                                ll t = sum(x1, x2, y1, y2, z); //转化为求最大和的连续子序列
                                k += t;
                                if (k >= 0) {
                                    s = max(k , s);
                                } else {
                                    k = 0;
                                    s = max(t, s);
                                }
                            }
                            S = max(S, s);
                        }
                    }
                }
            }
            cout << S << endl;
            if (T)
                cout << endl;
        }
    }
    
    ll sum(int x1, int x2, int y1, int y2, int z) {
        return A[x2][y2][z] - A[x1 - 1][y2][z] - A[x2][y1 - 1][z] + A[x1 - 1][y1 - 1][z];
    }
  • 相关阅读:
    软件测试作业随笔之二:Homework 2
    软件项目管理作业随笔之一:记我完成的一个项目
    C#博客随笔之十:Problem Statement+System Glossary+System Supplementary Specification FOR每美欲下
    C#博客随笔之九:EF框架的使用
    C#博客随笔之八:EntityFramework初识
    C#博客随笔之七:反射初体验
    C#博客随笔之六:数据绑定
    node.js 框架基本功能
    为什么不用第三方缓存
    微服务基础设施实现方案 -- node.js
  • 原文地址:https://www.cnblogs.com/wangsong/p/7751543.html
Copyright © 2011-2022 走看看