zoukankan      html  css  js  c++  java
  • 自定义角点检测器

    自定义角点检测器是基于Harris和Shi-Tomasi角点检测的

    首先通过计算矩阵M来得出λ1λ2两个特征值,然后根据他们得到角点响应值

    然后自己设置阈值实现实现计算出阈值得到有效响应值的角点位置

    API

    cv::cornerEigenValsAndVecs

    (

    InputArray src,

    OutputArray dst,

    int blocksize,

    int ksize,

    int borderType=BORDER_DEFAULT

    )

    cv::cornerMinEigenVal

    (

    InputArray src,

    OutputArray dst,

    int blocksize,

    int ksize=3,

    int borderType=BORDER_DEFAULT

    )

    自定义CustomHarris角点检测Demo

    #include"pch.h"
    #include<iostream>
    #include<opencv2/opencv.hpp>
    #include<math.h>
    using namespace std;
    using namespace cv;
    
    
    const char* output_title = "Custom Harris CornerDetection Reslut";
    double harris_mins_rsp;
    double harris_max_rsp;
    int qualityLevel = 30;
    int max_count = 100;
    Mat src, gray_src;
    Mat harris_dst, harriRspImg;
    void CustomHarris_Demo(int,void*);
    
    int main(int argc, char** argv)
    {
        src = imread("1.jpg");
        imshow("input img", src);
        int blocksize = 3;
        int ksize = 3;
        double k = 0.04;
        harriRspImg = Mat::zeros(src.size(), CV_32FC1);
        harris_dst = Mat::zeros(src.size(), CV_32FC(6));
        namedWindow(output_title, CV_WINDOW_AUTOSIZE);
        cvtColor(src, gray_src, COLOR_BGR2GRAY);
    
        //caculate eigen value计算特征值
        cornerEigenValsAndVecs(gray_src, harris_dst, blocksize, ksize, BORDER_DEFAULT);
    
        //计算响应
        for(int row=0;row<harris_dst.rows;++row)
            for (int col = 0; col < harris_dst.cols; ++col)
            {
                double lamda1=harris_dst.at<Vec6f>(row, col)[0];
                double lamda2 = harris_dst.at<Vec6f>(row, col)[1];
                harriRspImg.at<float>(row, col) = lamda1 * lamda2 - k * pow((lamda1 + lamda2), 2);//pow求平方
    
    
            }
        minMaxLoc(harriRspImg, &harris_mins_rsp, &harris_max_rsp, 0, 0,Mat());
        createTrackbar("Quality value:", output_title, &qualityLevel, max_count, CustomHarris_Demo);
        CustomHarris_Demo(0, 0);
        waitKey();
        return 0;
    }
    
    void CustomHarris_Demo(int, void*)
    {
        if (qualityLevel < 10)
            qualityLevel = 10;
        Mat resultImg = src.clone();
        float t = harris_mins_rsp + (double(qualityLevel)) / max_count * (harris_max_rsp - harris_mins_rsp);
        for(int row=0;row<src.rows;++row)
            for (int col = 0; col < src.cols; ++col)
            {
                float v = harriRspImg.at<float>(row, col);
                if (v > t)
                    circle(resultImg, Point(col, row), 2, Scalar(0, 0, 255), 2, 8, 0);
            }
        imshow(output_title, resultImg);
    }

    自定义CustomShi-Tomasi角点检测Demo

    #include"pch.h"
    #include<iostream>
    #include<opencv2/opencv.hpp>
    #include<math.h>
    using namespace std;
    using namespace cv;
    
    
    const char* output_title = "Custom Shi-Tomasi CornerDetection Reslut";
    double harris_mins_rsp;
    double harris_max_rsp;
    int qualityLevel = 30;
    int max_count = 100;
    Mat src, gray_src;
    Mat harris_dst, harriRspImg;
    //Shi-Tomasi
    Mat ShiTomasiRspImg;
    double ShiTomasi_max_rsp;
    double ShiTomasi_min_rsp;
    int SM_QualityLevel = 30;
    
    void CustomShiTomasi_Demo(int,void*);
    
    int main(int argc, char** argv)
    {
        src = imread("1.jpg");
        imshow("input img", src);
        int blocksize = 3;
        int ksize = 3;
        double k = 0.04;
        harriRspImg = Mat::zeros(src.size(), CV_32FC1);
        harris_dst = Mat::zeros(src.size(), CV_32FC(6));
        namedWindow(output_title, CV_WINDOW_AUTOSIZE);
        cvtColor(src, gray_src, COLOR_BGR2GRAY);
    
        //caculate eigen value计算特征值
        cornerEigenValsAndVecs(gray_src, harris_dst, blocksize, ksize, BORDER_DEFAULT);
    
        //计算响应
        for(int row=0;row<harris_dst.rows;++row)
            for (int col = 0; col < harris_dst.cols; ++col)
            {
                double lamda1 = harris_dst.at<Vec6f>(row, col)[0];
                double lamda2 = harris_dst.at<Vec6f>(row, col)[1];
                harriRspImg.at<float>(row, col) = lamda1 * lamda2 - k * pow((lamda1 + lamda2), 2);//pow求平方
    
    
            }
        minMaxLoc(harriRspImg, &harris_mins_rsp, &harris_max_rsp, 0, 0,Mat());
        //createTrackbar("Quality value:", output_title, &qualityLevel, max_count, CustomHarris_Demo);
        //CustomHarris_Demo(0, 0);
    
        //计算最小特征值
        ShiTomasiRspImg = Mat::zeros(src.size(), CV_32FC1);
        cornerMinEigenVal(gray_src, ShiTomasiRspImg, blocksize, ksize, 4);
        minMaxLoc(ShiTomasiRspImg, &ShiTomasi_min_rsp, &ShiTomasi_max_rsp, 0, 0, Mat());
        createTrackbar("Min Value:", output_title, &SM_QualityLevel, max_count, CustomShiTomasi_Demo);
        CustomShiTomasi_Demo(0, 0);
    
        waitKey();
        return 0;
    }
    
    void CustomShiTomasi_Demo(int, void*)
    {
        if (qualityLevel < 20)
            qualityLevel = 20;
        Mat resultImg = src.clone();
        float t = ShiTomasi_min_rsp + ((double(SM_QualityLevel)) / max_count) * (ShiTomasi_max_rsp - ShiTomasi_min_rsp);
        
        for(int row=0;row<src.rows;++row)
            for (int col = 0; col < src.cols; ++col)
            {
                float v = ShiTomasiRspImg.at<float>(row, col);
                if (v > t)
                    circle(resultImg, Point(col, row), 2, Scalar(0, 0, 255), 2, 8, 0);
            }
        imshow(output_title, resultImg);
    }

  • 相关阅读:
    Linux_进程之间的通信
    Linux_控制作业(管理)
    Linux_进程管理相关命令
    Linux_进程管理的基本概述
    文本编辑_Vim&Vi
    Linux_权限管理理论概述
    Linux_用户和组管理
    Linux_ACL文件访问控制列表
    72. VUE axios 配置信息相关
    71. VUE axios 发送并发请求(多个)
  • 原文地址:https://www.cnblogs.com/wangtianning1223/p/13526435.html
Copyright © 2011-2022 走看看