#1239 : Fibonacci
描述
Given a sequence {an}, how many non-empty sub-sequence of it is a prefix of fibonacci sequence.
A sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.
The fibonacci sequence is defined as below:
F1 = 1, F2 = 1
Fn = Fn-1 + Fn-2, n>=3 (微软2016年秋招第三题)
输入
One line with an integer n.
Second line with n integers, indicating the sequence {an}.
For 30% of the data, n<=10.
For 60% of the data, n<=1000.
For 100% of the data, n<=1000000, 0<=ai<=100000.
输出
One line with an integer, indicating the answer modulo 1,000,000,007.
样例提示
The 7 sub-sequences are:
{a2}
{a3}
{a2, a3}
{a2, a3, a4}
{a2, a3, a5}
{a2, a3, a4, a6}
{a2, a3, a5, a6}
样例输入
6 2 1 1 2 2 3
样例输出
7
分析:
题意就是找到给定序列中斐波那契子序列的个数。
1. 首先想到的就是动态规划,dp[i]表示以i结尾的斐波那契子序列,然后每次变量j (0...i-1)更新i。
但是这样时间复杂度是O(n^2),数据量10^6,肯定是超时的。
2. 考虑优化,每次更新只与斐波那契数列中的元素结尾的有关,没必要dp开那么大,并且从头遍历。
所以可以把dp存成vector<pair<int,int>>,一个表示值,一个表示以此结尾的fib序列个数。然后每次变量vector即可。
但是很遗憾,还是超时了。。。(当数组中斐波那契数列中的数存在很多时,依然是个O(n^2))。
3. 继续优化,其实每个遍历到每个数在斐波那契序列中,更新结果时,只与其在斐波那契序列中前一个数结尾fib序列个数有关。
所以可以把dp[i]考虑存储为以fib[i]结尾的斐波那契子序列个数,100000以内斐波那契数只有25个,所以时间复杂度O(25n) = O(n),就可以了。
注意: 用long long存result防止溢出;记得mod 1000000007
代码:
1 #include<iostream> 2 #include<unordered_map> 3 using namespace std; 4 int fib[26]; 5 const int m = 1000000007; 6 void init() { 7 int a = 1, b = 1, c = 2; 8 fib[1] = 1; 9 fib[2] = 1; 10 for (int i = 3; i <= 25; ++i) { 11 c = a + b; 12 fib[i] = c; 13 a = b; 14 b = c; 15 } 16 } 17 int findPos(int x) { 18 for (int i = 1; i <= 25; ++i) { 19 if (fib[i] == x) { 20 return i; 21 } 22 } 23 return -1; 24 } 25 26 int n; 27 int nums[1000000]; 28 long long dp[26] = {0}; 29 int main() { 30 init(); 31 cin >> n; 32 long long result = 0; 33 for (int i = 0; i < n; ++i) { 34 cin >> nums[i]; 35 } 36 int first = -1, second = -1; 37 for (int i = 0; i < n; ++i) { 38 if (nums[i] == 1) { 39 first = i; 40 for (int j = i + 1; j < n; ++j) { 41 if (nums[j] == 1) { 42 second = j; 43 break; 44 } 45 } 46 break; 47 } 48 } 49 if (first != -1) { 50 dp[1] = 1; 51 result += 1; 52 } 53 if (second != -1) { 54 dp[2] = 1; 55 dp[1] ++; 56 result += 2; 57 } 58 if (second == -1) { 59 cout << result << endl; 60 return 0; 61 } 62 63 for (int i = second + 1; i < n; ++i) { 64 if (findPos(nums[i]) == -1 ) { 65 continue; 66 } 67 if (nums[i] == 1) { //1单独处理 68 dp[2] += dp[1]; 69 dp[1]++; 70 result += dp[1]; 71 dp[2] %= m; 72 result %= m; 73 continue; 74 } 75 dp[findPos(nums[i])] += dp[findPos(nums[i]) - 1]; 76 result += dp[findPos(nums[i]) - 1]; 77 dp[findPos(nums[i])] %= m; 78 result %= m; 79 } 80 cout << result << endl; 81 }