zoukankan      html  css  js  c++  java
  • Python_散点图与折线图绘制

    在数据分析的过程中,经常需要将数据可视化,目前常使用的:散点图  折线图  

    需要import的外部包  一个是绘图 一个是字体导入

    import matplotlib.pyplot as plt
    from matplotlib.font_manager import FontProperties

    在数据处理前需要获取数据,从TXT  XML csv excel 等文本中获取需要的数据,保存到list

     1 def GetFeatureList(full_path_file):
     2     file_name = full_path_file.split('\')[-1][0:4]
     3     # print(file_name)
     4     # print(full_name)
     5     K0_list = []
     6     Area_list = []
     7     all_lines = []
     8     f = open(full_path_file,'r')
     9     all_lines = f.readlines()
    10     lines_num = len(all_lines)
    11     # 数据清洗
    12     if lines_num > 5000:
    13         for i in range(3,lines_num-1):
    14             temp_k0 = int(all_lines[i].split('	')[1])
    15             if temp_k0 == 0:
    16                 K0_list.append(ComputK0(all_lines[i]))
    17             else:
    18                 K0_list.append(temp_k0)
    19             Area_list.append(float(all_lines[i].split('	')[15]))
    20         # K0_Scatter(K0_list,Area_list,file_name)
    21     else:
    22         print('{} 该样本量少于5000'.format(file_name))
    23     return K0_list, Area_list,file_name

    绘制两组数据的散点图,同时绘制两个散点图,上下分布在同一个图片中

     1 def K0_Scatter(K0_list, area_list, pic_name):
     2     plt.figure(figsize=(25, 10), dpi=300)
     3     # 导入中文字体,及字体大小
     4     zhfont = FontProperties(fname='C:/Windows/Fonts/simsun.ttc', size=16)
     5     ax = plt.subplot(211)
     6     # print(K0_list)
     7     ax.scatter(range(len(K0_list)), K0_list, c='r', marker='o')
     8     plt.title(u'散点图', fontproperties=zhfont)
     9     plt.xlabel('Sampling point', fontproperties=zhfont)
    11     plt.ylabel('K0_value', fontproperties=zhfont)
    12     ax = plt.subplot(212)
    13     ax.scatter(range(len(area_list)), area_list, c='b', marker='o')
    14     plt.xlabel('Sampling point', fontproperties=zhfont)
    15     plt.ylabel(u'大小', fontproperties=zhfont)
    16     plt.title(u'散点图', fontproperties=zhfont)
    17     # imgname = 'E:\' + pic_name + '.png'
    18     # plt.savefig(imgname, bbox_inches = 'tight')
    19     plt.show()

    散点图显示

     

     绘制一个折线图 每个数据增加标签

     1 def K0_Plot(X_label, Y_label, pic_name):
     2     plt.figure(figsize=(25, 10), dpi=300)
     3     # 导入中文字体,及字体大小
     4     zhfont = FontProperties(fname='C:/Windows/Fonts/simsun.ttc', size=16)
     5     ax = plt.subplot(111)
     6     # print(K0_list)
     7     ax.plot(X_label, Y_label, c='r', marker='o')
     8     plt.title(pic_name, fontproperties=zhfont)
     9     plt.xlabel('coal_name', fontproperties=zhfont)
    10     plt.ylabel(pic_name, fontproperties=zhfont)
    11     # ax.xaxis.grid(True, which='major')
    12     ax.yaxis.grid(True, which='major')
    13     for a, b in zip(X_label, Y_label):
    14         str_label = a + str(b) + '%'
    15         plt.text(a, b, str_label, ha='center', va='bottom', fontsize=10)
    16     imgname = 'E:\' + pic_name + '.png'
    17     plt.savefig(imgname, bbox_inches = 'tight')
    18     # plt.show()

     绘制多条折线图

     1 def K0_MultPlot(dis_name, dis_lsit, pic_name):
     2     plt.figure(figsize=(80, 10), dpi=300)
     3     # 导入中文字体,及字体大小
     4     zhfont = FontProperties(fname='C:/Windows/Fonts/simsun.ttc', size=16)
     5     ax = plt.subplot(111)
     6     X_label = range(len(dis_lsit[1]))
     7     p1 = ax.plot(X_label, dis_lsit[1], c='r', marker='o',label='Euclidean Distance')
     8     p2 = ax.plot(X_label, dis_lsit[2], c='b', marker='o',label='Manhattan Distance')
     9     p3 = ax.plot(X_label, dis_lsit[4], c='y', marker='o',label='Chebyshev Distance')
    10     p4 = ax.plot(X_label, dis_lsit[5], c='g', marker='o',label='weighted Minkowski Distance')
    11     plt.legend()
    12     plt.title(pic_name, fontproperties=zhfont)
    13     plt.xlabel('coal_name', fontproperties=zhfont)
    14     plt.ylabel(pic_name, fontproperties=zhfont)
    15     # ax.xaxis.grid(True, which='major')
    16     ax.yaxis.grid(True, which='major')
    17     for a, b,c in zip(X_label, dis_lsit[5],dis_name):
    18         str_label = c + '_'+ str(b)
    19         plt.text(a, b, str_label, ha='center', va='bottom', fontsize=5)
    20     imgname = 'E:\' + pic_name + '.png'
    21     plt.savefig(imgname,bbox_inches = 'tight')
    22     # plt.show()

     图形显示还有许多小技巧,使得可视化效果更好,比如坐标轴刻度的定制,网格化等,后续进行整理

  • 相关阅读:
    mysql在ubuntu中的操作笔记(详)
    Ubuntu16.04上安装MySQL(详细过程)
    Python全栈开发day7
    Python全栈开发day6
    Python全栈开发day5
    Python内置函数总结
    Python全栈开发day4
    Python 集合方法总结
    Python全栈开发day3
    Web前端之CSS_day3-4
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/11719721.html
Copyright © 2011-2022 走看看