zoukankan      html  css  js  c++  java
  • Pytorch_模型转Caffe(一)解析caffemodel与prototxt

    Pytorch_模型转Caffe(一)

    1.Caffe简介

    2.Caffe进行目标检测任务

    • 利用ssd进行目标检测任务,主要步骤如下(重点是模型的移植)

    3.Caffe五大组件

    4.caffemodel

    • 包含了prototxt(除了solver.prototxt) 和 weights bias
      prototxt 以文本的方式存储网络结构
    • 通过创建caffe_pb2.NetParameter()对象,获取caffemodel内容
    model = caffe_pb2.NetParameter()        
    f = open(caffemodel_filename, 'rb')
    model.ParseFromString(f.read())
    
    • 循环获取每个layer下的参数
      model.layer是每层的信息
    ## 逐个解析prototxt 内容 但有点复杂
    for i,layer in enumerate(Tarpa_model.layer):
        tops = layer.top
        bottoms = layer.bottom
        top_str = ''
        bottom_str =''
        transform_param_str = ''
        data_param_str    = ''
        annotated_data_param_str=''
        for top in layer.top:
            top_str += '	top:"{}"
    '.format(top)
        for bottom in layer.bottom:
            bottom_str += '	bottom:"{}"
    '.format(bottom)
        # transform 
        if str(layer.transform_param)!='':
            transform_param_str = str(layer.transform_param).split('
    ')
            new_str_trans =''
            for item in transform_param_str:
                new_str_trans += '		'+str(item) + '
    ' if item!='' else ''
            # print(new_str_trans)
            transform_param_str = '	' +'transform_param {
    '+ new_str_trans +'	}'+'
    '
        # data_param
        if str(layer.data_param) != '':
            data_param_str = str(layer.data_param).split('
    ')
            new_str_data_param =''
            for item in data_param_str:
                new_str_data_param += '		'+str(item) + '
    ' if item!='' else ''
    
            data_param_str = '	' +'data_param {
    '+ new_str_data_param +'	}'+'
    '
        # annotated_data_param
        if str(layer.annotated_data_param) != '':
            annotated_data_param_str = str(layer.annotated_data_param).split('
    ')
            new_str_annotated_data_param =''
            for item in annotated_data_param_str:
                new_str_annotated_data_param += '		'+str(item) + '
    ' if item!='' else ''
            annotated_data_param_str = '	' +'annotated_data_param {
    '+ new_str_annotated_data_param +'	}'+'
    '
    
    • 解析后的部分结果
    ### train.prototxt 卷积层
    layer {
      name: "conv1_2"
      type: "Convolution"
      bottom: "conv1_1"
      top: "conv1_2"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        num_output: 64
        pad: 1
        kernel_size: 3
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    

    5.通过caffemodel解析train.prototxt

    • 旨在学习了解caffemodel中的数据存储结构
      采用剔除法,先保存所有layer,之后删除blobs和其他无用信息
    import caffe.proto.caffe_pb2 as caffe_pb2
    caffemodel_filename = src_path + '/***.caffemodel'
    Tarpa_model = caffe_pb2.NetParameter()        
    f = open(caffemodel_filename, 'rb')
    Tarpa_model.ParseFromString(f.read())
    f.close()
    
    print(Tarpa_model.name)
    print(Tarpa_model.input)
    # print(Tarpa_model.layer)
    # print(type(Tarpa_model.layer))
    f = open('_caffemodel_.log','w')
    f.write('name: "{}"'.format(Tarpa_model.name)+'
    ')
    for i,layer in enumerate(Tarpa_model.layer):
        transform_param_str = str(layer).split('
    ')
        new_str_trans =''
        comtinue_flag = 0
        for item in transform_param_str:
            if item == 'phase: TRAIN':
                continue
            if comtinue_flag and '}'in item:
                continue
            comtinue_flag = 0
            if 'blobs' in item or 'data:'in item or 'shape'in item or 'dim:'in item:
                comtinue_flag = 1
                continue
            new_str_trans += '	'+str(item) + '
    ' if item!='' else ''
        layer_str = 'layer {' +'
    '+
        new_str_trans+
        '}'+'
    '
        f.write(str(layer_str))
        print(i)
        # if i ==2:
        #     break
    f.close()
    

    6.caffemodel解析现存问题

    在生成.prototxt后可以看出有很多split字段,暂未得到解决

    layer {
    	name: "data_data_0_split"
    	type: "Split"
    	bottom: "data"
    	top: "data_data_0_split_0"
    	top: "data_data_0_split_1"
    	top: "data_data_0_split_2"
    	top: "data_data_0_split_3"
    	top: "data_data_0_split_4"
    	top: "data_data_0_split_5"
    	top: "data_data_0_split_6"
    	top: "data_data_0_split_7"
    }
    
    
  • 相关阅读:
    leetcode| Intersection of Two Arrays II
    Spring Boot起步依赖:定制starter
    SpringBoot自动配置的魔法是怎么实现的
    Dubbo中的IoC实现
    必须知道的String知识点
    Dubbo的SPI机制
    为什么要设置HTTP timeout?
    重构代码——简单工厂模式+模板方法模式
    计算机基础——位运算
    系统间HTTP调用代码封装
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/14145040.html
Copyright © 2011-2022 走看看