zoukankan      html  css  js  c++  java
  • Pytorch_模型转Caffe(二)解析Pytorch模型*.pth

    Pytorch_模型转Caffe(二)解析Pytorch模型*.pth

    1. Pytorch模型保存于读取

    a. 保存、加载权重

    # 模型保存(仅保存权重)
    torch.save(model_object.state_dict(), './weights.pth')
    # 模型加载(先创建模型,、再导入权重)
    model = AlexNet(**kwargs)
    model.load_state_dict(torch.load('./weights.pth'))
    

    b.保存、加载网络和权重

    # 模型保存(仅保存权重)
    torch.save(model_object, './model.pth')
    # 模型加载(先创建模型,、再导入权重)
    model = torch.load('./model.pth')
    

    2. Pytorch模型结构

    Pytorch生成的文件为.pth或.pt

    1). summary查看网络整体结构

    • 首先安装torchsummary pip install torchsummary
    • 以AelxNet为例,加载预训练模型,查看网络结构
    import torch
    from torch.autograd import Variable
    from torchvision.models.alexnet import alexnet
    from torchsummary import summary
    if __name__=='__main__':
        name='alexnet'
        net=alexnet(True)
        print(type(net))               #<class 'torchvision.models.alexnet.AlexNet'>
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = net.to(device)
        summary(model, (3,227,227))
    """
    # 网络结构
    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1           [-1, 64, 56, 56]          23,296
                  ReLU-2           [-1, 64, 56, 56]               0
             MaxPool2d-3           [-1, 64, 27, 27]               0
                Conv2d-4          [-1, 192, 27, 27]         307,392
                  ReLU-5          [-1, 192, 27, 27]               0
             MaxPool2d-6          [-1, 192, 13, 13]               0
                Conv2d-7          [-1, 384, 13, 13]         663,936
                  ReLU-8          [-1, 384, 13, 13]               0
                Conv2d-9          [-1, 256, 13, 13]         884,992
                 ReLU-10          [-1, 256, 13, 13]               0
               Conv2d-11          [-1, 256, 13, 13]         590,080
                 ReLU-12          [-1, 256, 13, 13]               0
            MaxPool2d-13            [-1, 256, 6, 6]               0
    AdaptiveAvgPool2d-14            [-1, 256, 6, 6]               0
              Dropout-15                 [-1, 9216]               0
               Linear-16                 [-1, 4096]      37,752,832
                 ReLU-17                 [-1, 4096]               0
              Dropout-18                 [-1, 4096]               0
               Linear-19                 [-1, 4096]      16,781,312
                 ReLU-20                 [-1, 4096]               0
               Linear-21                 [-1, 1000]       4,097,000
    ================================================================
    Total params: 61,100,840
    Trainable params: 61,100,840
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.59
    Forward/backward pass size (MB): 8.49
    Params size (MB): 233.08
    Estimated Total Size (MB): 242.16
    ----------------------------------------------------------------
    """
    

    2). net.state_dict()解析权重值

    net.state_dict()返回字典,key为layer名称,value为weights与bias

    • 只有那些参数可以训练的layer才会被保存到模型的state_dict中
    import torch
    from torch.autograd import Variable
    from torchvision.models.alexnet import alexnet
    from torchsummary import summary
    if __name__=='__main__':
        name='alexnet'
        net=alexnet(True)
        print(type(net.state_dict()))  #<class 'collections.OrderedDict'>
        # 只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等,像什么池化层、BN层这些本身没有参数的层是没有在这个字典中的;
        for param_tensor in net.state_dict(): # 字典的遍历默认是遍历 key,所以param_tensor实际上是键值
            print(param_tensor,'	',net.state_dict()[param_tensor].size())
    """
    features.0.weight        torch.Size([64, 3, 11, 11])
    features.0.bias          torch.Size([64])
    features.3.weight        torch.Size([192, 64, 5, 5])
    features.3.bias          torch.Size([192])
    features.6.weight        torch.Size([384, 192, 3, 3])
    features.6.bias          torch.Size([384])
    features.8.weight        torch.Size([256, 384, 3, 3])
    features.8.bias          torch.Size([256])
    features.10.weight       torch.Size([256, 256, 3, 3])
    features.10.bias         torch.Size([256])
    classifier.1.weight      torch.Size([4096, 9216])
    classifier.1.bias        torch.Size([4096])
    classifier.4.weight      torch.Size([4096, 4096])
    classifier.4.bias        torch.Size([4096])
    classifier.6.weight      torch.Size([1000, 4096])
    classifier.6.bias        torch.Size([1000])
    """
    

    3). net.named_parameters()获取layer和weight

    import torch
    from torch.autograd import Variable
    from torchvision.models.alexnet import alexnet
    from torchsummary import summary
    if __name__=='__main__':
        name='alexnet'
        net=alexnet(True)
        # 网络参数
        for layer in net.named_parameters():
            layer_name = layer[0]
            layer_weight = layer[1].size()
            print(layer_name,'   ',layer_weight)
    """
    features.0.weight     torch.Size([64, 3, 11, 11])
    features.0.bias     torch.Size([64])
    features.3.weight     torch.Size([192, 64, 5, 5])
    features.3.bias     torch.Size([192])
    features.6.weight     torch.Size([384, 192, 3, 3])
    features.6.bias     torch.Size([384])
    features.8.weight     torch.Size([256, 384, 3, 3])
    features.8.bias     torch.Size([256])
    features.10.weight     torch.Size([256, 256, 3, 3])
    features.10.bias     torch.Size([256])
    classifier.1.weight     torch.Size([4096, 9216])
    classifier.1.bias     torch.Size([4096])
    classifier.4.weight     torch.Size([4096, 4096])
    classifier.4.bias     torch.Size([4096])
    classifier.6.weight     torch.Size([1000, 4096])
    classifier.6.bias     torch.Size([1000])
    """
    

    4). net.named_modules()

    import torch
    from torch.autograd import Variable
    from torchvision.models.alexnet import alexnet
    from torchsummary import summary
    if __name__=='__main__':
        name='alexnet'
        net=alexnet(True)
        for name,layer in net.named_modules():
            print(name,'-->',layer)
    """
     --> AlexNet(
      (features): Sequential(
        (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
        (1): ReLU(inplace=True)
        (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
        (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
        (4): ReLU(inplace=True)
        (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
        (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (7): ReLU(inplace=True)
        (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (9): ReLU(inplace=True)
        (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (11): ReLU(inplace=True)
        (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
      (classifier): Sequential(
        (0): Dropout(p=0.5, inplace=False)
        (1): Linear(in_features=9216, out_features=4096, bias=True)
        (2): ReLU(inplace=True)
        (3): Dropout(p=0.5, inplace=False)
        (4): Linear(in_features=4096, out_features=4096, bias=True)
        (5): ReLU(inplace=True)
        (6): Linear(in_features=4096, out_features=1000, bias=True)
      )
    )
    features --> Sequential(
      (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
      (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (4): ReLU(inplace=True)
      (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
      (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (7): ReLU(inplace=True)
      (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (9): ReLU(inplace=True)
      (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (11): ReLU(inplace=True)
      (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    )
    features.0 --> Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    features.1 --> ReLU(inplace=True)
    features.2 --> MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    features.3 --> Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    features.4 --> ReLU(inplace=True)
    features.5 --> MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    features.6 --> Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    features.7 --> ReLU(inplace=True)
    features.8 --> Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    features.9 --> ReLU(inplace=True)
    features.10 --> Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    features.11 --> ReLU(inplace=True)
    features.12 --> MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    avgpool --> AdaptiveAvgPool2d(output_size=(6, 6))
    classifier --> Sequential(
      (0): Dropout(p=0.5, inplace=False)
      (1): Linear(in_features=9216, out_features=4096, bias=True)
      (2): ReLU(inplace=True)
      (3): Dropout(p=0.5, inplace=False)
      (4): Linear(in_features=4096, out_features=4096, bias=True)
      (5): ReLU(inplace=True)
      (6): Linear(in_features=4096, out_features=1000, bias=True)
    )
    classifier.0 --> Dropout(p=0.5, inplace=False)
    classifier.1 --> Linear(in_features=9216, out_features=4096, bias=True)
    classifier.2 --> ReLU(inplace=True)
    classifier.3 --> Dropout(p=0.5, inplace=False)
    classifier.4 --> Linear(in_features=4096, out_features=4096, bias=True)
    classifier.5 --> ReLU(inplace=True)
    classifier.6 --> Linear(in_features=4096, out_features=1000, bias=True)
    """
    
  • 相关阅读:
    AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)
    基于视觉的机械手控制
    远程图形界面:VncServer与KDE桌面远程连接
    远程图形界面:使用putty+xmin远程登录ubuntu-kde
    CUDA 显存操作:CUDA支持的C++11
    C++11:using 的各种作用
    C++ 模板template和template
    Detectron:Pytorch-Caffe2-Detectron的一些跟进
    TF实战:(Mask R-CNN原理介绍与代码实现)-Chapter-8
    The type javax.servlet.http.HttpServletRequest cannot be resolved.
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/14149810.html
Copyright © 2011-2022 走看看