zoukankan      html  css  js  c++  java
  • Tutorial on Adversarial Example Generation

    Tutorial on Adversarial Example Generation

    2020-02-14 09:37:06

    Sourcehttps://pytorch.org/tutorials/beginner/fgsm_tutorial.html 

    PaperExplaining and Harnessing Adversarial Examples, Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy [Paper

    Related Paper: Kurakin, Alexey, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu Pang et al. "Adversarial attacks and defences competition." In The NIPS'17 Competition: Building Intelligent Systems, pp. 195-231. Springer, Cham, 2018. [Paper

     

    本文来自 PyTorch 的官网网页,属于对抗机器学习的一个简要教程。本文将利用第一个也是最流行的对抗方法,the Fast Gradient Sign Attack (FGSA) 来愚弄 MNIST 分类器。

     

    Threat Model

    从内容的角度上来说,有许多种类的对抗方法,每一种方法的目标和先验知识都可能不尽相同。然而,总的来说,attack 的目标都是在原始的 input 数据上添加尽可能少的数据来使得模型分类错误。attacker 的知识可能有多种假设,其中较为常见的是两种:white-box 和 black-box。

    白盒攻击:假设 attacker 有完全的知识并且可以访问模型,包括网络结构,输入,输出,以及权重。 

    黑盒攻击:认为 attacker 仅能获得模型的输入和输出,而不知道任何关于网络结构和权重相关的知识。

    关于攻击的目标也可以是多样化的,主要是:misclassification,source/target misclassfication。

    misclassification 的目标是:使得模型的输出为错误的类别,而不关心错误的分类为什么类别;

    source/target misclassification 的目标是:对抗性的修改输入,使得模型可以错误的将类别分类为指定的类别。

     

    在这种情况下,FGSM 属于一种白盒攻击,目标是 misclassification。有了这些背景知识,我们就可以讨论对抗攻击的细节技术了。

     

    Fast Gradient Sign Attack

    接下来开始介绍 FGSA 技术,是大佬 Goodfellow 等人的工作,文章链接见上。该攻击方法是非常有效,却很直接,被设计通过梯度来攻击神经网络。该攻击方法利用损失的梯度,the input data,然后调整输入数据来最大化损失。

    在进入代码层面了解之前,我们先来看一下一个直观的例子,来感受一下这个对抗攻击的过程和效果:

     

     

    从该图可以发现,x 是原始的输入图像,并且可以正确的分类为 “Panda”,y 是其 ground truth label。对于 x,$ heta$ 代表模型的参数,$J( heta, x, y)$ 是用于训练网络的损失。Attack 将该梯度反传给输入数据来计算。然后,调整微调输入的图像(例如,ϵ 或者 0.007 in the picture) in the direction (i.e. sign(xJ(θ,x,y))),使其可以最大化 loss。在此之后得到的 perturbed image x',但是会被目标网络误分类为 “gibbon”,但是实际上看起来该图像仍然是一个 “Panda”。

     

    来看下代码怎么写的。

     

    from __future__ import print_function
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    import numpy as np
    import matplotlib.pyplot as plt

     

    Implementation

    该教程的输入仅有三个:

    epsilons --- List of epsilon values to use for the run. 

    pretrained_model --- path to the pre-trained MNIST model which was trained with pytorch/examples/mnist

    use_cuda ---- 是否利用 gpu。

     

    epsilons = [0, .05, .1, .15, .2, .25, .3]
    pretrained_model = "data/lenet_mnist_model.pth"
    use_cuda=True
    

     

      

     

    Model Under Attack

     

    # LeNet Model definition
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
    
        def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return F.log_softmax(x, dim=1)
    
    # MNIST Test dataset and dataloader declaration
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
                transforms.ToTensor(),
                ])),
            batch_size=1, shuffle=True)
    
    # Define what device we are using
    print("CUDA Available: ",torch.cuda.is_available())
    device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")
    
    # Initialize the network
    model = Net().to(device)
    
    # Load the pretrained model
    model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))
    
    # Set the model in evaluation mode. In this case this is for the Dropout layers
    model.eval()
    

     

      

    FGSM Attack  

    现在,我们可以定义function 通过修改原始的输入,来产生对抗样本。fgsm_attack 函数通过如下的方式来产生:

    最终,为了保持 data 的范围,被修改后的数据被裁减为 [0, 1]:

    # FGSM attack code
    def fgsm_attack(image, epsilon, data_grad):
        # Collect the element-wise sign of the data gradient
        sign_data_grad = data_grad.sign()
        # Create the perturbed image by adjusting each pixel of the input image
        perturbed_image = image + epsilon*sign_data_grad
        # Adding clipping to maintain [0,1] range
        perturbed_image = torch.clamp(perturbed_image, 0, 1)
        # Return the perturbed image
        return perturbed_image
    

      

    Testing Function

     

    def test( model, device, test_loader, epsilon ):
    
        # Accuracy counter
        correct = 0
        adv_examples = []
    
        # Loop over all examples in test set
        for data, target in test_loader:
    
            # Send the data and label to the device
            data, target = data.to(device), target.to(device)
    
            # Set requires_grad attribute of tensor. Important for Attack
            data.requires_grad = True
    
            # Forward pass the data through the model
            output = model(data)
            init_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
    
            # If the initial prediction is wrong, dont bother attacking, just move on
            if init_pred.item() != target.item():
                continue
    
            # Calculate the loss
            loss = F.nll_loss(output, target)
    
            # Zero all existing gradients
            model.zero_grad()
    
            # Calculate gradients of model in backward pass
            loss.backward()
    
            # Collect datagrad
            data_grad = data.grad.data
    
            # Call FGSM Attack
            perturbed_data = fgsm_attack(data, epsilon, data_grad)
    
            # Re-classify the perturbed image
            output = model(perturbed_data)
    
            # Check for success
            final_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
            if final_pred.item() == target.item():
                correct += 1
                # Special case for saving 0 epsilon examples
                if (epsilon == 0) and (len(adv_examples) < 5):
                    adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                    adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )
            else:
                # Save some adv examples for visualization later
                if len(adv_examples) < 5:
                    adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                    adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )
    
        # Calculate final accuracy for this epsilon
        final_acc = correct/float(len(test_loader))
        print("Epsilon: {}	Test Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))
    
        # Return the accuracy and an adversarial example
        return final_acc, adv_examples
    

     

      

     

    Run Attack

    accuracies = []
    examples = []
    
    # Run test for each epsilon
    for eps in epsilons:
        acc, ex = test(model, device, test_loader, eps)
        accuracies.append(acc)
        examples.append(ex)
    

      

    plt.figure(figsize=(5,5))
    plt.plot(epsilons, accuracies, "*-")
    plt.yticks(np.arange(0, 1.1, step=0.1))
    plt.xticks(np.arange(0, .35, step=0.05))
    plt.title("Accuracy vs Epsilon")
    plt.xlabel("Epsilon")
    plt.ylabel("Accuracy")
    plt.show()
    

      

     

    # Plot several examples of adversarial samples at each epsilon
    cnt = 0
    plt.figure(figsize=(8,10))
    for i in range(len(epsilons)):
        for j in range(len(examples[i])):
            cnt += 1
            plt.subplot(len(epsilons),len(examples[0]),cnt)
            plt.xticks([], [])
            plt.yticks([], [])
            if j == 0:
                plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
            orig,adv,ex = examples[i][j]
            plt.title("{} -> {}".format(orig, adv))
            plt.imshow(ex, cmap="gray")
    plt.tight_layout()
    plt.show()
    

      

     

     

  • 相关阅读:
    《ODAY安全:软件漏洞分析技术》学习心得-----shellcode的一点小小的思考
    关于《加密与解密》的读后感----对dump脱壳的一点思考
    React-Native(四):React Native之View学习
    React-Native(二):React Native开发工具vs code配置
    SqlServer优化:当数据量查询不是特别多,但数据库服务器的CPU资源一直100%时,如何优化?
    React-Native(一):React Native环境搭建
    游戏资源收集
    Java-NIO(九):管道 (Pipe)
    Java-NIO(八):DatagramChannel
    Java-NIO(七):阻塞IO与非阻塞IO
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/12306307.html
Copyright © 2011-2022 走看看