zoukankan      html  css  js  c++  java
  • Summary on deep learning framework --- Torch7

     Summary on deep learning framework --- Torch7 

    2018-07-22 21:30:28

     

    1. 尝试第一个 CNN 的 torch版本, 代码如下:

      

      1 --    We now have 5 steps left to do in training our first torch neural network
      2 --    1. Load and normalize data
      3 --    2. Define Neural Network
      4 --    3. Define Loss function
      5 --    4. Train network on training data
      6 --    5. Test network on test data.
      7 
      8 
      9 
     10 
     11 --    1. Load and normalize data
     12 require 'paths'
     13 require 'image';
     14 if (not paths.filep("cifar10torchsmall.zip")) then
     15     os.execute('wget -c https://s3.amazonaws.com/torch7/data/cifar10torchsmall.zip')
     16     os.execute('unzip cifar10torchsmall.zip')
     17 end
     18 trainset = torch.load('cifar10-train.t7')
     19 testset = torch.load('cifar10-test.t7')
     20 classes = {'airplane', 'automobile', 'bird', 'cat',
     21            'deer', 'dog', 'frog', 'horse', 'ship', 'truck'}
     22 
     23 print(trainset)
     24 print(#trainset.data)
     25 
     26 itorch.image(trainset.data[100]) -- display the 100-th image in dataset
     27 print(classes[trainset.label[100]])
     28 
     29 -- ignore setmetatable for now, it is a feature beyond the scope of this tutorial.
     30 -- It sets the index operator 
     31 setmetatable(trainset,
     32     {__index = function(t, i)
     33                     return {t.data[i], t.label[i]}
     34                 end}
     35 );
     36 trainset.data = trainset.data:double()  -- convert the data from a ByteTensor to a DoubleTensor.
     37 
     38 function trainset:size()
     39     return self.data:size(1)
     40 end
     41 
     42 print(trainset:size())
     43 print(trainset[33])
     44 itorch.image(trainset[33][11])
     45 
     46 redChannel = trainset.data[{ {}, {1}, {}, {} }] -- this pick {all images, 1st channel, all vertical pixels, all horizontal pixels}
     47 print(#redChannel)
     48 
     49 -- TODO:fill
     50 mean = {}
     51 stdv = {}
     52 for i = 1,3 do 
     53     mean[i] = trainset.data[{ {}, {i}, {}, {} }]:mean()  -- mean estimation 
     54     print('Channel ' .. i .. ' , Mean: ' .. mean[i])
     55     trainset.data[{ {}, {i}, {}, {} }]:add(-mean[i]) -- mean subtraction 
     56 
     57     stdv[i] = trainset.data[ { {}, {i}, {}, {} }]:std()  -- std estimation 
     58     print('Channel ' .. i .. ' , Standard Deviation: ' .. stdv[i])
     59     trainset.data[{ {}, {i}, {}, {} }]:div(stdv[i])  -- std scaling 
     60 end 
     61 
     62 
     63 
     64 --    2. Define Neural Network
     65 net = nn.Sequential()
     66 net:add(nn.SpatialConvolution(3, 6, 5, 5)) -- 3 input image channels, 6 output channels, 5x5 convolution kernel
     67 net:add(nn.ReLU())                       -- non-linearity 
     68 net:add(nn.SpatialMaxPooling(2,2,2,2))     -- A max-pooling operation that looks at 2x2 windows and finds the max.
     69 net:add(nn.SpatialConvolution(6, 16, 5, 5))
     70 net:add(nn.ReLU())                       -- non-linearity 
     71 net:add(nn.SpatialMaxPooling(2,2,2,2))
     72 net:add(nn.View(16*5*5))                    -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
     73 net:add(nn.Linear(16*5*5, 120))             -- fully connected layer (matrix multiplication between input and weights)
     74 net:add(nn.ReLU())                       -- non-linearity 
     75 net:add(nn.Linear(120, 84))
     76 net:add(nn.ReLU())                       -- non-linearity 
     77 net:add(nn.Linear(84, 10))                   -- 10 is the number of outputs of the network (in this case, 10 digits)
     78 net:add(nn.LogSoftMax())                     -- converts the output to a log-probability. Useful for classification problems
     79 
     80 
     81 -- 3. Let us difine the Loss function 
     82 criterion = nn.ClassNLLCriterion()
     83 
     84 
     85 
     86 -- 4. Train the neural network 
     87 trainer = nn.StochasticGradient(net, criterion)
     88 trainer.learningRate = 0.001
     89 trainer.maxIteration = 5 -- just do 5 epochs of training. 
     90 trainer:train(trainset)
     91 
     92 
     93 
     94 -- 5. Test the network, print accuracy
     95 print(classes[testset.label[100]])
     96 itorch.image(testset.data[100])
     97 
     98 testset.data = testset.data:double()   -- convert from Byte tensor to Double tensor
     99 for i=1,3 do -- over each image channel
    100     testset.data[{ {}, {i}, {}, {}  }]:add(-mean[i]) -- mean subtraction    
    101     testset.data[{ {}, {i}, {}, {}  }]:div(stdv[i]) -- std scaling
    102 end
    103 
    104 -- for fun, print the mean and standard-deviation of example-100
    105 horse = testset.data[100]
    106 print(horse:mean(), horse:std())
    107 
    108 print(classes[testset.label[100]])
    109 itorch.image(testset.data[100])
    110 predicted = net:forward(testset.data[100])
    111  
    112 -- the output of the network is Log-Probabilities. To convert them to probabilities, you have to take e^x 
    113 print(predicted:exp())
    114 
    115 
    116 for i=1,predicted:size(1) do
    117     print(classes[i], predicted[i])
    118 end
    119 
    120 
    121 -- test the accuracy 
    122 correct = 0
    123 for i=1,10000 do
    124     local groundtruth = testset.label[i]
    125     local prediction = net:forward(testset.data[i])
    126     local confidences, indices = torch.sort(prediction, true)  -- true means sort in descending order
    127     if groundtruth == indices[1] then
    128         correct = correct + 1
    129     end
    130 end
    131 
    132 
    133 print(correct, 100*correct/10000 .. ' % ')
    134 
    135 class_performance = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
    136 for i=1,10000 do
    137     local groundtruth = testset.label[i]
    138     local prediction = net:forward(testset.data[i])
    139     local confidences, indices = torch.sort(prediction, true)  -- true means sort in descending order
    140     if groundtruth == indices[1] then
    141         class_performance[groundtruth] = class_performance[groundtruth] + 1
    142     end
    143 end
    144 
    145 
    146 for i=1,#classes do
    147     print(classes[i], 100*class_performance[i]/1000 .. ' %')
    148 end
    149 
    150 require 'cunn';
    151 net = net:cuda()
    152 criterion = criterion:cuda()
    153 trainset.data = trainset.data:cuda()
    154 trainset.label = trainset.label:cuda()
    155 
    156 trainer = nn.StochasticGradient(net, criterion)
    157 trainer.learningRate = 0.001
    158 trainer.maxIteration = 5 -- just do 5 epochs of training.
    159 
    160 
    161 trainer:train(trainset)
    View Code

      

        那么,运行起来 却出现如下的问题:

      (1).

    /home/wangxiao/torch/install/bin/luajit: ./train_network.lua:26: attempt to index global 'itorch' (a nil value)
    stack traceback:
    ./train_network.lua:26: in main chunk
    [C]: in function 'dofile'
    ...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
    [C]: at 0x00406670
    wangxiao@AHU:~/Documents/Lua test examples$

     

     

     

        主要是 itorch 的问题, 另外就是 要引用 require 'nn' 来解决 无法辨别 nn 的问题.

      我是把 带有 itorch 的那些行都暂时注释了.

     

     

    2.  'libcudnn (R5) not found in library path.

     

    wangxiao@AHU:~/Downloads/wide-residual-networks-master$ th ./train_Single_Multilabel_Image_Classification.lua
    nil
    /home/wangxiao/torch/install/bin/luajit: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: /home/wangxiao/torch/install/share/lua/5.1/cudnn/ffi.lua:1600: 'libcudnn (R5) not found in library path.
    Please install CuDNN from https://developer.nvidia.com/cuDNN
    Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)

    stack traceback:
    [C]: in function 'error'
    /home/wangxiao/torch/install/share/lua/5.1/trepl/init.lua:384: in function 'require'
    ./train_Single_Multilabel_Image_Classification.lua:8: in main chunk
    [C]: in function 'dofile'
    ...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
    [C]: at 0x00406670
    wangxiao@AHU:~/Downloads/wide-residual-networks-master$

    ================================================================>>

    答案是

      重新下载了 cudnn-7.5-linux-x64-v5.0-ga.tgz 

      并且重新配置了,但是依然提醒这个问题,那么,问题何在呢?查看了博客:http://blog.csdn.net/hungryof/article/details/51557666 中的内容:


      坑4 可能出现’libcudnn not found in library path’的情况

      截取其中一段错误信息:

    Please install CuDNN from https://developer.nvidia.com/cuDNN
    Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)
    • 1
    • 2

    LD_LIBRARY_PATH是该环境变量,主要用于指定查找共享库(动态链接库)时除了默认路径之外的其他路径。由于刚才已经将 
    “libcudnn*”复制到了/usr/local/cuda-7.5/lib64/下面,因此需要

    1. sudo gedit /etc/ld.so.conf.d/cudnn.conf 就是新建一个conf文件。名字随便
    2. 加入刚才的路径/usr/local/cuda-7.5/lib64/
    3. 反正我还添加了/usr/local/cuda-7.5/include/,这个估计不要也行。
    4. 保存后,再sudo ldconfig来更新缓存。(可能会出现libcudnn.so.5不是符号连接的问题,不过无所谓了!!)

    此时运行

    th neural_style.lua -gpu 0 -backend cudnn
    • 1

    成功了!!!! 

     

    ============================================================>>>>

    评价:  按照这种做法试了,确实成功了! 赞一个 !!!

     


      3. 利用 gm 加载图像时,提示错误,但是装上那个包仍然提示错误:

        

     

      

    Load library:

    gm = require 'graphicsmagick'

    First, we provide two high-level functions to load/save directly into/form tensors:

    img = gm.load('/path/to/image.png' [, type])    -- type = 'float' (default) | 'double' | 'byte'
    gm.save('/path/to/image.jpg' [,quality])        -- quality = 0 to 100 (for jpegs only)

    The following provide a more controlled flow for loading/saving jpegs.

    Create an image, from a file:

    image = gm.Image('/path/to/image.png')
    -- or
    image = gm.Image()
    image:load('/path/to/image.png')

      但是悲剧的仍然有错, 只好换了用 image.load() 的方式加载图像:
      
    --To load as byte tensor for rgb imagefile
    local img = image.load(imagefile,3,'byte')
    
    
     
      4. Torch 保存 txt 文件:
      -- save opt
      file = torch.DiskFile(paths.concat(opt.checkpoints_dir, opt.name, 'opt.txt'), 'w')
      file:writeObject(opt)
      file:close()
      
      5. Torch 创建新的文件夹
      opts.modelPath = opt.modelDir .. opt.modelName
      if not paths.dirp(opt.modelPath) then
        paths.mkdir(opts.modelPath)
      end

     
     6. Torch Lua 保存 图像到文件夹
      借助 image package,首先安装: luarocks install image
      然后 require 'image'
      就可以使用了:
    local img = image.save('./saved_pos_neg_image/candidate_' .. tostring(i) .. tostring(j) .. '.png', pos_patch, 1, 32, 32)

      7. module 'bit' not found:No LuaRocks module found for bit

    wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$ th ./train.lua
    /home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: module 'bit' not found:No LuaRocks module found for bit
    no field package.preload['bit']
    no file '/home/wangxiao/.luarocks/share/lua/5.2/bit.lua'
    no file '/home/wangxiao/.luarocks/share/lua/5.2/bit/init.lua'
    no file '/home/wangxiao/torch/install/share/lua/5.2/bit.lua'
    no file '/home/wangxiao/torch/install/share/lua/5.2/bit/init.lua'
    no file '/home/wangxiao/.luarocks/share/lua/5.1/bit.lua'
    no file '/home/wangxiao/.luarocks/share/lua/5.1/bit/init.lua'
    no file '/home/wangxiao/torch/install/share/lua/5.1/bit.lua'
    no file '/home/wangxiao/torch/install/share/lua/5.1/bit/init.lua'
    no file './bit.lua'
    no file '/home/wangxiao/torch/install/share/luajit-2.1.0-beta1/bit.lua'
    no file '/usr/local/share/lua/5.1/bit.lua'
    no file '/usr/local/share/lua/5.1/bit/init.lua'
    no file '/home/wangxiao/.luarocks/lib/lua/5.2/bit.so'
    no file '/home/wangxiao/torch/install/lib/lua/5.2/bit.so'
    no file '/home/wangxiao/torch/install/lib/bit.so'
    no file '/home/wangxiao/.luarocks/lib/lua/5.1/bit.so'
    no file '/home/wangxiao/torch/install/lib/lua/5.1/bit.so'
    no file './bit.so'
    no file '/usr/local/lib/lua/5.1/bit.so'
    no file '/usr/local/lib/lua/5.1/loadall.so'
    stack traceback:
    [C]: in function 'error'
    /home/wangxiao/torch/install/share/lua/5.2/trepl/init.lua:389: in function 'require'
    ./train.lua:5: in main chunk
    [C]: in function 'dofile'
    ...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
    [C]: in ?
    wangxiao@AHU:/media/wangxiao/724eaeef-e688-4b09-9cc9-dfaca44079b2/fast-neural-style-master$


    在终端中执行:luarocks install luabitop
    就可以了。


    8.  HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]

    /home/wangxiao/torch/install/bin/lua: /home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: HDF5Group:read() - no such child 'media' for [HDF5Group 33554432 /]
    stack traceback:
    [C]: in function 'error'
    /home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:312: in function </home/wangxiao/torch/install/share/lua/5.2/hdf5/group.lua:302>
    (...tail calls...)
    ./fast_neural_style/DataLoader.lua:44: in function '__init'
    /home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:91: in function </home/wangxiao/torch/install/share/lua/5.2/torch/init.lua:87>
    [C]: in function 'DataLoader'
    ./train.lua:138: in function 'main'
    ./train.lua:327: in main chunk
    [C]: in function 'dofile'
    ...xiao/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
    [C]: in ? 

     

    最近在训练 类型迁移的代码,发现这个蛋疼的问题。哎。。纠结好几天了。。这个 hdf5 到底怎么回事 ?  求解释 !!! 

    ------------------------------------------------------------------------------------------------

      后来发现, 是我自己的数据集路径设置的有问题, 如: 应该是 CoCo/train/image/ 

      但是,我只是给定了 CoCo/train/ ...

     

     

     


     

      9. 怎么设置 torch代码在哪块 GPU 上运行 ? 或者 怎么设置在两块卡上同时运行 ?

      

        

      如图所示: export CUDA_VISIBLE_DEVICES=0 即可指定代码在 GPU-0 上运行. 

      


      10.  When load the pre-trained VGG model, got the following errors: 

     

        MODULE data UNDEFINED
        warning: module 'data [type 5]' not found
        nn supports no groups!
        warning: module 'conv2 [type 4]' not found
        nn supports no groups!
        warning: module 'conv4 [type 4]' not found
        nn supports no groups!
        warning: module 'conv5 [type 4]' not found

     

      

     1 using cudnn
     2 Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel
     3 MODULE data UNDEFINED
     4 warning: module 'data [type 5]' not found
     5 nn supports no groups!
     6 warning: module 'conv2 [type 4]' not found
     7 nn supports no groups!
     8 warning: module 'conv4 [type 4]' not found
     9 nn supports no groups!
    10 warning: module 'conv5 [type 4]' not found

     

      1 wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$ qlua ./train_match_function_alexNet_version_2017_02_28.lua 
      2 using cudnn
      3 Successfully loaded ./feature_transfer/AlexNet_files/bvlc_alexnet.caffemodel
      4 MODULE data UNDEFINED
      5 warning: module 'data [type 5]' not found
      6 nn supports no groups!
      7 warning: module 'conv2 [type 4]' not found
      8 nn supports no groups!
      9 warning: module 'conv4 [type 4]' not found
     10 nn supports no groups!
     11 warning: module 'conv5 [type 4]' not found
     12 conv1: 96 3 11 11
     13 conv3: 384 256 3 3
     14 fc6: 1 1 9216 4096
     15 fc7: 1 1 4096 4096
     16 fc8: 1 1 4096 1000
     17 nn.Sequential {
     18 [input -> (1) -> (2) -> (3) -> output]
     19 (1): nn.SplitTable
     20 (2): nn.ParallelTable {
     21 input
     22 |`-> (1): nn.Sequential {
     23 | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> output]
     24 | (1): nn.SpatialConvolution(3 -> 96, 11x11, 4,4)
     25 | (2): nn.ReLU
     26 | (3): nn.SpatialCrossMapLRN
     27 | (4): nn.SpatialMaxPooling(3x3, 2,2)
     28 | (5): nn.ReLU
     29 | (6): nn.SpatialCrossMapLRN
     30 | (7): nn.SpatialMaxPooling(3x3, 2,2)
     31 | (8): nn.SpatialConvolution(256 -> 384, 3x3, 1,1, 1,1)
     32 | (9): nn.ReLU
     33 | (10): nn.ReLU
     34 | (11): nn.ReLU
     35 | (12): nn.SpatialMaxPooling(3x3, 2,2)
     36 | (13): nn.View(-1)
     37 | (14): nn.Linear(9216 -> 4096)
     38 | (15): nn.ReLU
     39 | (16): nn.Dropout(0.500000)
     40 | (17): nn.Linear(4096 -> 4096)
     41 | (18): nn.ReLU
     42 | }
     43 `-> (2): nn.Sequential {
     44 [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> output]
     45 (1): nn.SpatialConvolution(3 -> 96, 11x11, 4,4)
     46 (2): nn.ReLU
     47 (3): nn.SpatialCrossMapLRN
     48 (4): nn.SpatialMaxPooling(3x3, 2,2)
     49 (5): nn.ReLU
     50 (6): nn.SpatialCrossMapLRN
     51 (7): nn.SpatialMaxPooling(3x3, 2,2)
     52 (8): nn.SpatialConvolution(256 -> 384, 3x3, 1,1, 1,1)
     53 (9): nn.ReLU
     54 (10): nn.ReLU
     55 (11): nn.ReLU
     56 (12): nn.SpatialMaxPooling(3x3, 2,2)
     57 (13): nn.View(-1)
     58 (14): nn.Linear(9216 -> 4096)
     59 (15): nn.ReLU
     60 (16): nn.Dropout(0.500000)
     61 (17): nn.Linear(4096 -> 4096)
     62 (18): nn.ReLU
     63 }
     64 ... -> output
     65 }
     66 (3): nn.PairwiseDistance
     67 }
     68 =================================================================================================================
     69 ================= AlextNet based Siamese Search for Visual Tracking ========================
     70 =================================================================================================================
     71 ==>> The Benchmark Contain: 36 videos ... 
     72 deal with video 1/36 video name: BlurFace ... please waiting ... 
     73 the num of gt bbox: 493
     74 the num of video frames: 493
     75 ========>>>> Begin to track 2 video name: nil-th frame, please waiting ... 
     76 ========>>>> Begin to track 3 video name: nil-th frame, please waiting ... ............] ETA: 0ms | Step: 0ms 
     77 ========>>>> Begin to track 4 video name: nil-th frame, please waiting ... ............] ETA: 39s424ms | Step: 80ms 
     78 ========>>>> Begin to track 5 video name: nil-th frame, please waiting ... ............] ETA: 33s746ms | Step: 69ms 
     79 ========>>>> Begin to track 6 video name: nil-th frame, please waiting ... ............] ETA: 31s817ms | Step: 65ms 
     80 ========>>>> Begin to track 7 video name: nil-th frame, please waiting ... ............] ETA: 32s575ms | Step: 66ms 
     81 ========>>>> Begin to track 8 video name: nil-th frame, please waiting ... ............] ETA: 34s376ms | Step: 70ms 
     82 ========>>>> Begin to track 9 video name: nil-th frame, please waiting ... ............] ETA: 40s240ms | Step: 82ms 
     83 ========>>>> Begin to track 10 video name: nil-th frame, please waiting ... ...........] ETA: 44s211ms | Step: 91ms 
     84 ========>>>> Begin to track 11 video name: nil-th frame, please waiting ... ...........] ETA: 45s993ms | Step: 95ms 
     85 ========>>>> Begin to track 12 video name: nil-th frame, please waiting ... ...........] ETA: 47s754ms | Step: 99ms 
     86 ========>>>> Begin to track 13 video name: nil-th frame, please waiting ... ...........] ETA: 50s392ms | Step: 104ms 
     87 ========>>>> Begin to track 14 video name: nil-th frame, please waiting ... ...........] ETA: 53s138ms | Step: 110ms 
     88 ========>>>> Begin to track 15 video name: nil-th frame, please waiting ... ...........] ETA: 55s793ms | Step: 116ms 
     89 ========>>>> Begin to track 16 video name: nil-th frame, please waiting ... ...........] ETA: 59s253ms | Step: 123ms 
     90 ========>>>> Begin to track 17 video name: nil-th frame, please waiting ... ...........] ETA: 1m2s | Step: 130ms 
     91 ========>>>> Begin to track 18 video name: nil-th frame, please waiting ... ...........] ETA: 1m5s | Step: 137ms 
     92 ========>>>> Begin to track 19 video name: nil-th frame, please waiting ... ...........] ETA: 1m8s | Step: 143ms 
     93 ========>>>> Begin to track 20 video name: nil-th frame, please waiting ... ...........] ETA: 1m11s | Step: 149ms 
     94 //////////////////////////////////////////////////////////////////////////..............] ETA: 1m14s | Step: 157ms 
     95 ==>> pos_proposal_list: 19
     96 ==>> neg_proposal_list: 19
     97 qlua: /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:67: 
     98 In 2 module of nn.Sequential:
     99 In 1 module of nn.ParallelTable:
    100 In 8 module of nn.Sequential:
    101 /home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:117: Need input of dimension 3 and input.size[0] == 256 but got input to be of shape: [96 x 13 x 13] at /tmp/luarocks_cunn-scm-1-6210/cunn/lib/THCUNN/generic/SpatialConvolutionMM.cu:49
    102 stack traceback:
    103 [C]: in function 'v'
    104 /home/wangxiao/torch/install/share/lua/5.1/nn/THNN.lua:117: in function 'SpatialConvolutionMM_updateOutput'
    105 ...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:79: in function <...ao/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:76>
    106 [C]: in function 'xpcall'
    107 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
    108 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function <...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:41>
    109 [C]: in function 'xpcall'
    110 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
    111 ...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:12: in function <...angxiao/torch/install/share/lua/5.1/nn/ParallelTable.lua:10>
    112 [C]: in function 'xpcall'
    113 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
    114 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
    115 ./train_match_function_alexNet_version_2017_02_28.lua:525: in function 'opfunc'
    116 /home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:37: in function 'optim'
    117 ./train_match_function_alexNet_version_2017_02_28.lua:550: in main chunk
    118 
    119 
    120 
    121 WARNING: If you see a stack trace below, it doesn't point to the place where this error occurred. Please use only the one above.
    122 stack traceback:
    123 [C]: at 0x7f86014df9c0
    124 [C]: in function 'error'
    125 /home/wangxiao/torch/install/share/lua/5.1/nn/Container.lua:67: in function 'rethrowErrors'
    126 ...e/wangxiao/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
    127 ./train_match_function_alexNet_version_2017_02_28.lua:525: in function 'opfunc'
    128 /home/wangxiao/torch/install/share/lua/5.1/optim/adam.lua:37: in function 'optim'
    129 ./train_match_function_alexNet_version_2017_02_28.lua:550: in main chunk
    130 wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$

     

     

      Just like the screen shot above, change the 'nn' into 'cudnn' will be ok and passed. 

     

      11. both (null) and torch.FloatTensor have no less-than operator

        qlua: ./test_MM_tracker_VGG_.lua:254: both (null) and torch.FloatTensor have no less-than operator
        stack traceback:
        [C]: at 0x7f628816e9c0
        [C]: in function '__lt'
        ./test_MM_tracker_VGG_.lua:254: in main chunk 

      

      Because it is floatTensor () style and you can change it like this if you want this value printed in a for loop: predictValue -->> predictValue[i] .

       

     

      12. 

    ========>>>> Begin to track the 6-th and the video name is ILSVRC2015_train_00109004 , please waiting ...
    THCudaCheck FAIL file=/tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory
    qlua: cuda runtime error (2) : out of memory at /tmp/luarocks_cutorch-scm-1-707/cutorch/lib/THC/generic/THCStorage.cu:66
    stack traceback:
    [C]: at 0x7fa20a8f99c0
    [C]: at 0x7fa1dddfbee0
    [C]: in function 'Tensor'
    ./train_match_function_VGG_version_2017_03_02.lua:377: in main chunk
    wangxiao@AHU:~/Downloads/multi-modal-visual-tracking$

     

        Yes, it is just out of memory of GPU. Just turn the batchsize to a small value, it may work. It worked for me. Ha ha ... 

     

     13. luarocks install class does not have any effect, it still shown me the error: No Module named "class" in Torch. 

      ==>> in terminal, install this package in sudo.

      ==>> then, it will be OK.  

     

    14. How to install opencv 3.1 on Ubuntu 14.04 ??? 

      As we can found from: http://blog.csdn.net/a125930123/article/details/52091140  

      1. first, you should install torch successfully ; 

      2. then, just follow what the blog said here: 

    安装opencv3.1
    1、安装必要的包
    sudo apt-get install build-essential
    sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
    2、下载opencv3.1
    http://opencv.org/downloads.html
    解压:unzip opencv-3.1.0
    3、安装
    cd ~/opencv-3.1.0
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
    sudo make -j24 
    sudo make install -j24  
    sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
    sudo ldconfig
    安装完成
    4、问题
    在安装过程中可能会出现无法下载 ippicv_linux_20151201.tgz的问题。
    解决方案:
    手动下载ippicv_linux_20151201.tgzhttps://raw.githubusercontent.com/Itseez/opencv_3rdparty/81a676001ca8075ada498583e4166079e5744668/ippicv/ippicv_linux_20151201.tgz
    将下载好的文件  放入 opencv-3.1.0/3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e 中,如果已经存在 ,则替换掉,这样就可以安装完成了。
    5、最后执行命令
    luarocks install cv

    OpenCV bindings for Torch安装成功。 

    But, maybe you may found some errors, such as: 

    cudalegacy/src/graphcuts.cpp:120:54: error: ‘NppiGraphcutState’ has not been declared    (solution draw from: http://blog.csdn.net/allyli0022/article/details/62859290)

    At this moment, you need to change some files: 

    found graphcuts.cpp in opencv3.1, and do the following changes: 

    解决方案:需要修改一处源码:
    在graphcuts.cpp中将
    #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) 
    改为
    #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000) 

    then, try again, it will be ok...this code just want to make opencv3.1 work under cuda 8.0, you know...skip that judge sentence...


    15.  安装torch-hdf5 
    sudo apt-get install libhdf5-serial-dev hdf5-tools 
    git clone https://github.com/deepmind/torch-hdf5 
    cd torch-hdf5 
    sudo luarocks make hdf5-0-0.rockspec LIBHDF5_LIBDIR=”/usr/lib/x86_64-Linux-gnu/”
    
    

    17. iTorch安装 

    
    
    git clone https://github.com/zeromq/zeromq4-1.git 
    mkdir build-zeromq 
    cd build-zeromq 
    cmake .. 
    make && make install 
    安装完之后,luarocks install itorch 
    之后可以通过luarocks list查看是否安装成功
    
    

     

     

     

     

     

     

     

     


     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    extend()和append()区别
    extend()和append()区别
    extend()和append()区别
    extend()和append()区别
    Ethtool工具源码剖析
    [数据库基础]——索引
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5701358.html
Copyright © 2011-2022 走看看