zoukankan      html  css  js  c++  java
  • python学习day-14 分类器及tensorflow导入mnist数据集出现报错

    • 先在你正在写的项目下创建文件夹MNIST_data
    • Yann LeCun's website。从官网下载四个压缩包,不用解压直接放入文件夹中
    • 成功导入数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    

      分类器   分类数字0-9    输入层28*28=784   输出层  10

    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    """
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    # number 1 to 10 data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
    # from tensorflow.examples.tutorials.mnist import input_data
    # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    def add_layer(inputs, in_size, out_size, activation_function=None,):
        # add one more layer and return the output of this layer
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b,)
        return outputs
    
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs: v_xs})
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
        return result
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
    ys = tf.placeholder(tf.float32, [None, 10])
    
    # add output layer
    prediction = add_layer(xs, 784, 10,  activation_function=tf.nn.softmax)
    
    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                  reduction_indices=[1]))       # loss
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess = tf.Session()
    # important step
    sess.run(tf.initialize_all_variables())
    
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
        if i % 50 == 0:
            print(compute_accuracy(
                mnist.test.images, mnist.test.labels))
    

      

  • 相关阅读:
    npm常用命令
    React进阶
    ant按需加载、配置configoverrides.js文件、项目中引入less、解决TypeError: this.getOptions is not a function错误
    数组常用api
    react项目实战简单登录注册
    Hoot新特性
    win10全局安装插件却不能全局用,https:/go.microsoft.com/ fwlink/?LinkID=135170禁止运行脚本
    Ant Design编辑表格(类组件)
    反射解决类的复制
    基于Jquery和Ajax的多选框
  • 原文地址:https://www.cnblogs.com/wangxiaoyienough/p/9537661.html
Copyright © 2011-2022 走看看