zoukankan      html  css  js  c++  java
  • 实验一 感知器及其应用

    名称 内容
    博客班级 班级链接
    作业要求 作业链接
    学号 3180701126

    一.实验目的

    1.理解感知器算法原理,能实现感知器算法;

    2.掌握机器学习算法的度量指标;

    3.掌握最小二乘法进行参数估计基本原理;

    4.针对特定应用场景及数据,能构建感知器模型并进行预测。

    二.实验内容

    1.安装Pycharm,注册学生版。

    2.安装常见的机器学习库,如Scipy、Numpy、Pandas、Matplotlib,sklearn等。

    3.编程实现感知器算法。

    4.熟悉iris数据集,并能使用感知器算法对该数据集构建模型并应用

    三.实验过程及结果

    实验代码及注释

    1、

    
    import pandas as pd
    import numpy as np
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    %matplotlib inline
    

    2、

    # load data
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)//将列名设置为特征
    df['label'] = iris.target//增加一列为类别标签
    

    3、

    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']//将各个列重命名
    df.label.value_counts()value_counts//确认数据出现的频率
    

    4、

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')//绘制散点图
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')//给图加上图例
    plt.ylabel('sepal width')
    plt.legend()
    

    5、

    data = np.array(df.iloc[:100, [0, 1, -1]])//按行索引,取出第0,1,-1列
    

    6、

    X, y = data[:,:-1], data[:,-1]//X为sepal length,sepal width y为标签
    

    7、

    y = np.array([1 if i == 1 else -1 for i in y])//将两个类别设重新设置为+1 —1
    

    8、

    #数据线性可分,二分类数据
    #此处为一元一次线性方程
    class Model:
    def init(self)://将参数w1,w2置为1 b置为0 学习率为0.1
    self.w = np.ones(len(data[0])-1, dtype=np.float32) //data[0]为第一行的数据len(data[0]=3)这里取两个w权重参数
    self.b = 0
    self.l_rate = 0.1
    %# self.data = data
    
    def sign(self, x, w, b):
    y = np.dot(x, w) + b
    return y
    
    # 随机梯度下降法
    def fit(self, X_train, y_train)://拟合训练数据求w和b
    is_wrong = False//判断是否误分类
    while not is_wrong:
    wrong_count = 0
    for d in range(len(X_train))://取出样例,不断的迭代
    X = X_train[d]
    y = y_train[d]
    if y * self.sign(X, self.w, self.b) <= 0://根据错误的样本点不断的更新和迭代w和b的值(根据相乘结果是否为负来判断是否出错,本题将0也归为错误)
    self.w = self.w + self.l_ratenp.dot(y, X)
    self.b = self.b + self.l_ratey
    wrong_count += 1
    if wrong_count == 0://直到误分类点为0 跳出循环
    is_wrong = True
    return 'Perceptron Model!'
    
    def score(self):
    pass
    

    9、

    #拟合
    perceptron = Model()#生成一个算法对象
    perceptron.fit(X, y)#将测试数据代入算法中
    

    10、

    #画出超平面
    x_points = np.linspace(4, 7,10)//x轴的划分
    y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1]
    plt.plot(x_points, y_)//绘制模型图像(数据、颜色、图例等信息)
    plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
    plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    11、

    from sklearn.linear_model import Perceptron//定义感知机(下面将使用感知机)
    

    12、

    clf = Perceptron(fit_intercept=False, max_iter=1000, shuffle=False)
    clf.fit(X, y)//使用训练数据拟合
    

    13、

    %# Weights assigned to the features.
    print(clf.coef_)//输出感知机模型参数
    

    14、

    %# 截距 Constants in decision function.
    print(clf.intercept_)//输出感知机模型参数
    

    15、

    #画出sklearn结果的散点图
    x_ponits = np.arange(4, 8)#x,为4,5,6,7,默认步长为1,起始为4,终止为8,不取8
    y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]#绘制超平面
    plt.plot(x_ponits, y_)
    plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')#将数据的前50个数据绘制散点图
    plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')#将数据的50-100之间的数据绘制成散点图
    plt.xlabel('sepal length')#x坐标命名
    plt.ylabel('sepal width')#y坐标命名
    plt.legend()
    

    实验结果截图

    psp表格

    psp2.1 任务内容 计划完成需要的时间(min) 实际完成需要的时间(min)
    Planning 计划 110 10
    Development 开发 110 150
    Analysis 需求分析(包括学习新技术) 10 10
    Design Spec 生成设计文档 30 40
    Design Review 设计复审 5 10
    Coding Standard 代码规范 5 5
    Design 具体设计 10 12
    Coding 具体编码 30 20
    Code Review 代码复审 5 7
    Test 测试(自我测试,修改代码,提交修改) 8 16
    Reporting 报告 9 6
    Test Report 测试报告 5 5
    Size Measurement 计算工作量 3 1
    Postmortem & Process Improvement Plan 事后总结,并提出过程改进计划 3 3
  • 相关阅读:
    例行性工作排程 (crontab)
    数组
    继续我们的学习。这次鸟哥讲的是LVM。。。磁盘管理 最后链接文章没有看
    htop资源管理器
    转:SSL协议详解
    转:SSL 握手协议详解
    转:Connection reset原因分析和解决方案
    使用Mybatis-Generator自动生成Dao、Model、Mapping相关文件(转)
    转:logback的使用和logback.xml详解
    转:Java logger组件:slf4j, jcl, jul, log4j, logback, log4j2
  • 原文地址:https://www.cnblogs.com/wangyifo/p/14749889.html
Copyright © 2011-2022 走看看