zoukankan      html  css  js  c++  java
  • 实验一

    一、环境

    pycharm tensorflow1.15 python3.7 sklearn

    二、波士顿房价预测实验

    from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import mean_squared_error
    #from sklearn.externals import joblib
    from sklearn.metrics import r2_score
    from sklearn.neural_network import MLPRegressor
    
    import pandas as pd
    import numpy as np
    
    lb = load_boston()
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.2)
    
    
    # 为数据增加一个维度,相当于把[1, 5, 10] 变成 [[1, 5, 10],]
    y_train = y_train.reshape(-1, 1)#列数为1
    y_test = y_test.reshape(-1, 1)
    
    # 进行标准化
    std_x = StandardScaler()#标准化数据
    x_train = std_x.fit_transform(x_train)#对数据进行某种统一处理
    x_test = std_x.transform(x_test)
    
    std_y = StandardScaler()
    y_train = std_y.fit_transform(y_train)
    y_test = std_y.transform(y_test)
    # 正规方程预测
    lr = LinearRegression()#线性回归
    lr.fit(x_train, y_train)
    print("r2 score of Linear regression is",r2_score(y_test,lr.predict(x_test)))
    #岭回归
    from sklearn.linear_model import RidgeCV
    
    cv = RidgeCV(alphas=np.logspace(-3, 2, 100))#样本数据集
    cv.fit (x_train , y_train)
    print("r2 score of Linear regression is",r2_score(y_test,cv.predict(x_test)))
    #梯度下降
    sgd = SGDRegressor()#最大迭代次数
    sgd.fit(x_train, y_train)#用训练器数据拟合分类器模型
    print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(x_test)))
    View Code

    三、鸢尾花分类

    from sklearn import datasets
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn import tree
    
    # Iris数据集是常用的分类实验数据集,
    # 由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,
    # 是一类多重变量分析的数据集。数据集包含150个数据集,
    # 分为3类,每类50个数据,每个数据包含4个属性。
    # 可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
    
    # 载入数据集
    iris = datasets.load_iris()#数据集
    iris_data = iris['data']
    iris_label = iris['target']
    iris_target_name = iris['target_names']
    X = np.array(iris_data)
    Y = np.array(iris_label)
    print(X)
    # 训练
    clf = tree.DecisionTreeClassifier(max_depth=3)
    clf.fit(X, Y)
    
    # 这里预测当前输入的值的所属分类
    print('类别是', iris_target_name[clf.predict([[12, 1, -1, 10]])[0]])
    View Code

    实验截图:

    四、特征处理(标准化、归一化、正则化)

    4.1

    from sklearn.preprocessing import StandardScaler
    from sklearn.preprocessing import MinMaxScaler
    from matplotlib import gridspec
    import numpy as np
    import matplotlib.pyplot as plt
    
    cps = np.random.random_integers(0, 100, (100, 2))
    
    ss = StandardScaler()#标准化归一化
    std_cps = ss.fit_transform(cps)#对数据进行某种统一处理
    
    gs = gridspec.GridSpec(5, 5)#创建区域,参数5,5的意思就是每行五个,每列五个,最后就是一个5×5的画布
    fig = plt.figure()#创建画布
    ax1 = fig.add_subplot(gs[0:2, 1:4])#在画布上创建不同的区域
    ax2 = fig.add_subplot(gs[3:5, 1:4])
    
    ax1.scatter(cps[:, 0], cps[:, 1])#标准化
    ax2.scatter(std_cps[:, 0], std_cps[:, 1])
    
    plt.show()
    View Code

    实验截图:

    4.2

    from sklearn.preprocessing import MinMaxScaler
    import numpy as np
    
    data = np.random.uniform(0, 100, 10)[:, np.newaxis]#从零位对浮点数组做舍入
    mm = MinMaxScaler()#归一化特征到一定区间
    mm_data = mm.fit_transform(data)#对数据进行某种统一处理
    origin_data = mm.inverse_transform(mm_data)#将标准化后的数据转换为原始数据。
    print('data is ',data)
    print('after Min Max ',mm_data)
    print('origin data is ',origin_data)
    View Code

    实验截图:

    4.3

    X = [[1, -1, 2],
         [2, 0, 0],
         [0, 1, -1]]
    
    # 使用L2正则化
    from sklearn.preprocessing import normalize
    l2 = normalize(X, norm='l2')#数据预处理
    print('l2:', l2)
    
    # 使用L1正则化
    from sklearn.preprocessing import Normalizer
    normalizerl1 = Normalizer(norm='l1')#对每个样本的每一个元素都除以该样本的L1范数. 
    l1 = normalizerl1.fit_transform(X)
    print('l1:', l1)
    View Code

    实验截图:

     五、交叉验证

    from sklearn.model_selection import train_test_split,cross_val_score,cross_validate # 交叉验证所需的函数
    from sklearn.model_selection import KFold,LeaveOneOut,LeavePOut,ShuffleSplit # 交叉验证所需的子集划分方法
    from sklearn.model_selection import StratifiedKFold,StratifiedShuffleSplit # 分层分割
    from sklearn.model_selection import GroupKFold,LeaveOneGroupOut,LeavePGroupsOut,GroupShuffleSplit # 分组分割
    from sklearn.model_selection import TimeSeriesSplit # 时间序列分割
    from sklearn import datasets  # 自带数据集
    from sklearn import svm  # SVM算法
    from sklearn import preprocessing  # 预处理模块
    from sklearn.metrics import recall_score  # 模型度量
    
    iris = datasets.load_iris()  # 加载数据集
    print('样本集大小:',iris.data.shape,iris.target.shape)
    
    # ===================================数据集划分,训练模型==========================
    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.4, random_state=0)  # 交叉验证划分训练集和测试集.test_size为测试集所占的比例
    print('训练集大小:',X_train.shape,y_train.shape)  # 训练集样本大小
    print('测试集大小:',X_test.shape,y_test.shape)  # 测试集样本大小
    clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train) # 使用训练集训练模型
    print('准确率:',clf.score(X_test, y_test))  # 计算测试集的度量值(准确率)
    
    
    #  如果涉及到归一化,则在测试集上也要使用训练集模型提取的归一化函数。
    scaler = preprocessing.StandardScaler().fit(X_train)  # 通过训练集获得归一化函数模型。(也就是先减几,再除以几的函数)。在训练集和测试集上都使用这个归一化函数
    X_train_transformed = scaler.transform(X_train)
    clf = svm.SVC(kernel='linear', C=1).fit(X_train_transformed, y_train) # 使用训练集训练模型
    X_test_transformed = scaler.transform(X_test)
    print(clf.score(X_test_transformed, y_test))  # 计算测试集的度量值(准确度)
    
    # ===================================直接调用交叉验证评估模型==========================
    clf = svm.SVC(kernel='linear', C=1)
    scores = cross_val_score(clf, iris.data, iris.target, cv=5)  #cv为迭代次数。
    print(scores)  # 打印输出每次迭代的度量值(准确度)
    print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))  # 获取置信区间。(也就是均值和方差)
    
    # ===================================多种度量结果======================================
    scoring = ['precision_macro', 'recall_macro'] # precision_macro为精度,recall_macro为召回率
    scores = cross_validate(clf, iris.data, iris.target, scoring=scoring,cv=5, return_train_score=True)
    sorted(scores.keys())
    print('测试结果:',scores)  # scores类型为字典。包含训练得分,拟合次数, score-times (得分次数)
    
    
    # ==================================K折交叉验证、留一交叉验证、留p交叉验证、随机排列交叉验证==========================================
    # k折划分子集
    kf = KFold(n_splits=2)
    for train, test in kf.split(iris.data):
        print("k折划分:%s %s" % (train.shape, test.shape))
        break
    
    # 留一划分子集
    loo = LeaveOneOut()
    for train, test in loo.split(iris.data):
        print("留一划分:%s %s" % (train.shape, test.shape))
        break
    
    # 留p划分子集
    lpo = LeavePOut(p=2)
    for train, test in loo.split(iris.data):
        print("留p划分:%s %s" % (train.shape, test.shape))
        break
    
    # 随机排列划分子集
    ss = ShuffleSplit(n_splits=3, test_size=0.25,random_state=0)
    for train_index, test_index in ss.split(iris.data):
        print("随机排列划分:%s %s" % (train.shape, test.shape))
        break
    
    # ==================================分层K折交叉验证、分层随机交叉验证==========================================
    skf = StratifiedKFold(n_splits=3)  #各个类别的比例大致和完整数据集中相同
    for train, test in skf.split(iris.data, iris.target):
        print("分层K折划分:%s %s" % (train.shape, test.shape))
        break
    
    skf = StratifiedShuffleSplit(n_splits=3)  # 划分中每个类的比例和完整数据集中的相同
    for train, test in skf.split(iris.data, iris.target):
        print("分层随机划分:%s %s" % (train.shape, test.shape))
        break
    
    
    # ==================================组 k-fold交叉验证、留一组交叉验证、留 P 组交叉验证、Group Shuffle Split==========================================
    X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
    y = ["a", "b", "b", "b", "c", "c", "c", "d", "d", "d"]
    groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
    
    # k折分组
    gkf = GroupKFold(n_splits=3)  # 训练集和测试集属于不同的组
    for train, test in gkf.split(X, y, groups=groups):
        print("组 k-fold分割:%s %s" % (train, test))
    
    # 留一分组
    logo = LeaveOneGroupOut()
    for train, test in logo.split(X, y, groups=groups):
        print("留一组分割:%s %s" % (train, test))
    
    # 留p分组
    lpgo = LeavePGroupsOut(n_groups=2)
    for train, test in lpgo.split(X, y, groups=groups):
        print("留 P 组分割:%s %s" % (train, test))
    
    # 随机分组
    gss = GroupShuffleSplit(n_splits=4, test_size=0.5, random_state=0)
    for train, test in gss.split(X, y, groups=groups):
        print("随机分割:%s %s" % (train, test))
    
    
    # ==================================时间序列分割==========================================
    tscv = TimeSeriesSplit(n_splits=3)
    TimeSeriesSplit(max_train_size=None, n_splits=3)
    for train, test in tscv.split(iris.data):
        print("时间序列分割:%s %s" % (train, test))
    View Code
  • 相关阅读:
    多线程之同步代码块与同步函数
    图片上传客户端与服务端
    tcp上传学习二--文本文件上传
    javaScript编写9*9口诀
    tcp聊天
    udp聊天室--简易
    往sencha.cmd中恢复设计项时,不论是系统的还是应用的,恢复进去之后都应该一键发布到前端
    一个设计项上的按钮调另一个设计项的列表界面,同时加筛选条件
    点击【****】设计项上的某个按钮,直接调出另一个设计项的【编辑界面】
    前端向后端发送请求,后端返回的一个值的请求的ajax.get();方法
  • 原文地址:https://www.cnblogs.com/wangzhaojun1670/p/14548411.html
Copyright © 2011-2022 走看看