zoukankan      html  css  js  c++  java
  • 算法设计与分析——分治DC算法

    1、Algorithm Introduction

    image.png

    #include <stdio.h>
    #define N 100
    
    //子函数实现二分搜索算法,查找给定元素 x 的位置
    int Binary_Search(int a[],int low,int high,int x)
    {
    	int mid;
    	mid=(low+high)/2;
    	if(low>high)
    		return -1; /*查找失败*/
    	else if(x==a[mid])
    		return mid; /*找到元素的位置并返回*/
    	else if(x>a[mid])
    		return Binary_Search(a,mid+1,high,x);
    	else
    		return Binary_Search(a,low,mid-1,x);
    }
    
    void main()
    {
    	int a[N];
    	int i,t,x,n;
    	printf("请输入已排序数组中元素的个数 n:");
    	scanf("%d",&n);
    	printf("请输入已排序数组中的元素(共%d 个数):\n",n);
    	for(i=0;i<n;i++)
    	{
    		scanf("%d",&a[i]); /*从键盘输入一组数*/
    	}
    	printf("请输入要查找的元素 x 为:");
    	scanf("%d",&x);
    	t=Binary_Search(a,0,n-1,x); /*调用子函数,查找元素 x 在数组 a[n]中的位置*/
    	if (t==-1)
    		printf("\n 查找失败!");
    	else
    		printf("元素 x 是数组中第%d 个元素。\n",t+1);  /*因为数组的下标从 0 开始,实际的位置应为其坐标位置加 1*/
    }
    

    (2)、Merge_Sort

    image.png

    #include <stdio.h>
    #include <stdlib.h>
    #define N 8
    
    //将两个有序的数组 R[low...m]和 R[m+1...high]归并成一个有序的数组 R[low..high]
    void Merge(int R[],int b[],int low,int m,int high)
    {
    	int i=low,j=m+1,p=0;
    	while(i<=m&&j<=high) /*两子数组非空时取其小者输出到 R1[p]上*/
    		b[p++]=(R[i]<=R[j])?R[i++]:R[j++];
    	while(i<=m) /*若第 1 个子文件非空,则复制剩余记录到 R1 中*/
    		b[p++]=R[i++];
    	while(j<=high) /*若第 2 个子文件非空,则复制剩余记录到 R1 中*/
    		b[p++]=R[j++];
    	for(p=0,i=low;i<=high;p++,i++)
    		R[i]=b[p]; /*归并完成后将结果复制回 R[low..high]*/
    }
    //用分治法对 R[low..high]进行二路归并排序
    void MergeSort(int R[],int low,int high)
    {
    	int mid;
    	int b[N];
    	if(low<high) /*区间长度大于 1*/
    	{
    		mid=(low+high)/2; /*分解*/
    		MergeSort(R,low,mid); /*递归地对 R[low..mid]排序*/
    		MergeSort(R,mid+1,high); /*递归地对 R[mid+1..high]排序*/
    		Merge(R,b,low,mid,high); /*组合,将两个有序区归并为一个有序区*/
    	}
    }
    
    void main()
    {
    	int a[N];
    	int i,j;
    	for(j=0;j<N;j++)
    		a[j]=rand()%100; /*系统随机生成 8 个数*/
    	//scanf("%d",&array[j]); //取消此注释语句可以手动输入无序数组
    	printf("随机生成数组为:\n");
    	for(i=0;i<N;i++)
    		printf("%d ",a[i]);
    	MergeSort(a,0,N-1);
    	printf("\n 已排序数组为:\n");
    	for(i=0;i<N-1;i++)
    		printf("%d ",a[i]);
    	printf("\n\n");
    }
    

    2、Maximum Contiguous Subarray Problem

    (1)、Overview

    • Clean way to illustrate basic algorithm design
      • A Θ(n 3) brute force algorithm
      • A Θ(n 2) algorithm that reuses data
      • A Θ(n log n) divide-and-conquer algorithm
    • Cost of algorithm will be number of primitive operations, e.g., comparisons and arithmetic operations, that it uses.

    (2)、MCS Example

    image.png

    Between years 5 and 8 ACME earned 5 + 2 − 1 + 3 = 9 Million Dollars

    This is the MAXIMUM amount that ACME earned in any contiguous span of years.

    Examples: Between years 1 and 9 ACME earned −3 + 2 + 1 − 4 + 5 + 2 − 1 + 3 − 1 = 4 and between years 2 and 6 2 + 1 − 4 + 5 + 2 = 6

    The Maximum Contiguous Subarray Problem is to find the span of years in which ACME earned the most, e.g., (5, 8).

    (3)、Formal Definition

    image.png

    (4)、Θ(n 3) Solution: Brute Force

    Idea: Calculate the value of V (i, j) for each pair i ≤ j and return the maximum value.

    VMAX=A[1];
    for (i=1 to N) 
    {
    	for (j=i to N) 
        {
    		// calculate V(i, j)
    		V=0;
    		for (x= i to j)
    			V=V+A[x];
    		if (V > VMAX)
    			VMAX=V;
    	}
    }
    return VMAX;
    

    (5)、Θ(n 2) Solution: Reuse data

    Idea: We don’t need to calculate each V (i, j) from “scratch” but can exploit the fact that

    image.png

    VMAX=A[1];
    for (i=1 to N)
    {
    	V=0;
    	for (j=i to N) 
        {
    		// calculate V(i, j)
    		V=V+A[j];
    		if (V > VMAX)
    		VMAX=V;
    	}
    }
    return VMAX;
    

    (6)、Θ(n log n) Solution: Divide-and-Conquer

    Idea: Set M = [(N + 1)/2] , [] indicates rounding down temporarily.

    Let A1 and A2 be the MCS that must contain A[M] and A[M + 1] respectively. Note that the MCS must be one of

    • S1 : The MCS in A[1 . . . M]
    • S2 : The MCS in A[M + 1 . . . N]
    • A : Where A = A1 ∪ A2

    image.png

    (7)、Example

    image.png

    (8)、Finding A : The conquer stage

    image.png

    MAX=A[M];
    SUM=A[M];
    for (k=M-1 down to i)
    {
    	SUM+=A[k];
    	if (SUM > MAX) 
            MAX=SUM;
    }
    A_1=MAX;
    

    image.png

    (9)、The Full Divide-and-Conquer Algorithm

    // Input : A[i . . . j] with i ≤ j

    // Output : the MCS of A[i . . . j]

    image.png

    (10)、A full example

    image.png

    (11)、Analysis of the DC Algorithm

    Let T(m) (where m is the problem size) be time needed to run

    ​ MCS(A, i, j), (j − i + 1 = m)

    Step (1) requires O(1) time.

    Steps (3) and (4) each require T(m/2) time.

    Step (5) requires O(m) time.

    Step (6) requires O(1) time

    Then T(1) = O(1) and for n > 1, T(n) = 2 T(n/2) + O(n)

    To simplify the analysis, we assume that n is a power of 2.

    T(n) ≤ 2 T( n 2 ) + c n.

    Repeating this recurrence gives

    image.png

    Set h = log2 n, so that 2 h = n.

    With this substitution, we have

    image.png

    (12)、Review

    In this lecture we saw 3 different algorithms for solving the maximum contiguous subarray problem. They were

    • A Θ(n 3) brute force algorithm
    • A Θ(n 2) algorithm that reuses data
    • A Θ(n log n) divide-and-conquer algorithm
  • 相关阅读:
    vscode设置js文件自动格式化单引号
    解决git每次输入账号密码问题
    vscode设置vouter标签不换行
    查看修改npm地址并登录
    正则匹配[]外部的内容
    使用v-model实现父子组件之间传值
    发布网站
    安装IIS
    IIS服务添加角色
    react生命周期
  • 原文地址:https://www.cnblogs.com/wangzheming35/p/15573022.html
Copyright © 2011-2022 走看看