zoukankan      html  css  js  c++  java
  • 基于C#的Kalman滤波器

    最近项目用到了kalman滤波器,由于是.NET平台的,原来的OpenCV的那套东西不能用了,还好灵光乍现,开源就是好啊!

    花了一个小时将CvKalman用C#进行实现,解决了!

    其中的Matrix运算采用了CSDN下载频道的“C#矩阵库”。

    using System;
    using System.Collections.Generic;
    using System.Text;

    namespace SimTransfer
    {
        public class KalmanFacade
        {
            #region inner class
            class KalmanFilter
            {
                int MP;                     /* number of measurement vector dimensions */
                int DP;                     /* number of state vector dimensions */
                int CP;                     /* number of control vector dimensions */

                public Matrix state_pre;           /* predicted state (x'(k)):
                                            x(k)=A*x(k-1)+B*u(k) */
                public Matrix state_post;          /* corrected state (x(k)):
                                            x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
                public Matrix transition_matrix;   /* state transition matrix (A) */
                public Matrix control_matrix;      /* control matrix (B)
                                           (it is not used if there is no control)*/
                public Matrix measurement_matrix;  /* measurement matrix (H) */
                public Matrix process_noise_cov;   /* process noise covariance matrix (Q) */
                public Matrix measurement_noise_cov; /* measurement noise covariance matrix (R) */
                public Matrix error_cov_pre;       /* priori error estimate covariance matrix (P'(k)):
                                            P'(k)=A*P(k-1)*At + Q)*/
                Matrix gain;                /* Kalman gain matrix (K(k)):
                                            K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
                Matrix error_cov_post;      /* posteriori error estimate covariance matrix (P(k)):
                                            P(k)=(I-K(k)*H)*P'(k) */
                Matrix temp1;               /* temporary matrices */
                Matrix temp2;
                Matrix temp3;
                Matrix temp4;
                Matrix temp5;

                public KalmanFilter()
                {
                    MP = 1;
                    DP = 2;
                    CP = 0;
                    state_pre = new Matrix(DP, 1);
                    state_pre.Zero();
                    state_post = new Matrix(DP, 1);
                    state_post.Zero();
                    transition_matrix = new Matrix(DP, DP);
                    transition_matrix.SetIdentity(1.0);
                    transition_matrix[0, 1] = 1;
                    process_noise_cov = new Matrix(DP, DP);
                    process_noise_cov.SetIdentity(1.0);
                    measurement_matrix = new Matrix(MP, DP);
                    measurement_matrix.SetIdentity(1.0);
                    measurement_noise_cov = new Matrix(MP, MP);
                    measurement_noise_cov.SetIdentity(1.0);
                    error_cov_pre = new Matrix(DP, DP);
                    error_cov_post = new Matrix(DP, DP);
                    error_cov_post.SetIdentity(1);
                    gain = new Matrix(DP, MP);
                    if (CP > 0)
                    {
                        control_matrix = new Matrix(DP, CP);
                        control_matrix.Zero();
                    }
                    //
                    temp1 = new Matrix(DP, DP);
                    temp2 = new Matrix(MP, DP);
                    temp3 = new Matrix(MP, MP);
                    temp4 = new Matrix(MP, DP);
                    temp5 = new Matrix(MP, 1);
                }

                public Matrix Predict()
                {
                    state_pre = transition_matrix.Multiply(state_post);
                    //if (CP>0)
                    //{
                    //    control_matrix
                    //}
                    temp1 = transition_matrix.Multiply(error_cov_post);
                    Matrix at = transition_matrix.Transpose();
                    error_cov_pre = temp1.Multiply(at).Add(process_noise_cov);

                    Matrix result = new Matrix(state_pre);
                    return result;
                }

                public Matrix Correct(Matrix measurement)
                {
                    temp2 = measurement_matrix.Multiply(error_cov_pre);
                    Matrix ht = measurement_matrix.Transpose();
                    temp3 = temp2.Multiply(ht).Add(measurement_noise_cov);
                    temp3.InvertSsgj();
                    temp4 = temp3.Multiply(temp2);
                    gain = temp4.Transpose();

                    temp5 = measurement.Subtract(measurement_matrix.Multiply(state_pre));
                    state_post = gain.Multiply(temp5).Add(state_pre);

                    error_cov_post = error_cov_pre.Subtract(gain.Multiply(temp2));

                    Matrix result = new Matrix(state_post);
                    return result;
                }

                public Matrix AutoPredict(Matrix measurement)
                {
                    Matrix result = Predict();

                    Correct(measurement);

                    return result;
                }
            }
            #endregion

            public KalmanFacade(int valueItem)
            {
                if (valueItem<=0)
                {
                    throw new Exception("not enough value items!");
                }
                kmfilter = new KalmanFilter[valueItem];
                Random rand = new Random(1001);
                for (int i = 0; i < valueItem; i++ )
                {
                    kmfilter[i] = new KalmanFilter();
                    kmfilter[i].state_post[0, 0] = rand.Next(10);
                    kmfilter[i].state_post[1, 0] = rand.Next(10);
                    //
                    kmfilter[i].process_noise_cov.SetIdentity(1e-5);
                    kmfilter[i].measurement_noise_cov.SetIdentity(1e-1);
                }
            }

            private KalmanFilter[] kmfilter = null;
           
            public bool GetValue(double[] inValue, ref double[] outValue)
            {
                if (inValue.Length != kmfilter.Length || outValue.Length != kmfilter.Length)
                {
                    return false;
                }

                Matrix[] measures = new Matrix[kmfilter.Length];
               
                for (int i = 0; i < kmfilter.Length; i++ )
                {
                    measures[i] = new Matrix();
                    measures[i][0, 0] = inValue[i];
                    outValue[i] = kmfilter[i].AutoPredict(measures[i])[0, 0];
                }

                return true;
            }
        }

    }

    //==========test=============

                SimTransfer.KalmanFacade kalman = new SimTransfer.KalmanFacade(1);
                Random rand = new Random(1001);
                System.IO.StreamWriter dataFile = new System.IO.StreamWriter("D:\\test.csv");
               
                for (int x = 0; x < 2000; x++ )
                {
                    double y = 100 * Math.Sin((2.0 * Math.PI / (float)200) * x);
                   
                    double noise = 20 * Math.Sin((40.0 * Math.PI / (float)200) * x) + 40 * (rand.NextDouble() - 0.5);

                    double[] z_k = new double[1];
                    z_k[0] = y + noise;
                    double[] y_k = new double[1];
                    kalman.GetValue(z_k, ref y_k);

                    dataFile.WriteLine(y.ToString()
                        + "," + z_k[0].ToString()
                        + "," + y_k[0].ToString());
                }

                dataFile.Close();
                MessageBox.Show("OK!");

    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/csdnbao/archive/2009/09/24/4590519.aspx

  • 相关阅读:
    人人都有数字替身的时代马上到来
    教你如何在linux下查看服务是否已经启动或者关闭
    提前了解2019年物联网发展的六大趋势
    本科理工男如何学习Linux
    linux常见命令ps的应用
    useradd 命令的常见用法
    简单聊聊Linux学习经历
    什么是公网IP、内网IP和NAT转换?
    远程获得的有趣的linux命令
    js练习题之查找数组中的位子
  • 原文地址:https://www.cnblogs.com/wangzihao/p/2058150.html
Copyright © 2011-2022 走看看