zoukankan      html  css  js  c++  java
  • 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】

    题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的。

    然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个。如下图

    而如果一条链上面有分支,也是一样:

    所以我们实际上只需要把最长链上的变成一种颜色就可以了。最长链就是直径,需要改动的点就是$frac{tot+1}{2}$,$tot$就是直径的点数。

    (话说$stl$好慢aaa!!!要克制住我自己少用$map$叻!

    #include<iostream>
    #include<cstdio>
    #include<map>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    int n, a[100005];
    int stot, tov[200005], nex[200005], h[100005];
    map < pair < int, int >, int > G;
    
    void add ( int u, int v ) {
        tov[++stot] = v;
        nex[stot] = h[u];
        h[u] = stot;
    }
    
    int stot_co, tov_co[200005], nex_co[200005], h_co[100005];
    void add_co ( int u, int v ) {
        tov_co[++stot_co] = v;
        nex_co[stot_co] = h_co[u];
        h_co[u] = stot_co;
    }
    
    int fa[100005];
    int find ( int x ) {
        if ( x != fa[x] ) fa[x] = find ( fa[x] );
        return x;
    }
    
    void unionn ( int x, int y ) {
        int xx = find ( x ), yy = find ( y );
        fa[xx] = yy;
    }
    
    int opt, color[100005];
    void dfs1 ( int u, int f ) {
        for ( int i = h[u]; i; i = nex[i] ) {
            int v = tov[i];
            if ( v == f ) continue;
            color[v] = 0;
            if ( a[v] == a[u] ) color[v] = color[u];
            else color[v] = ++ opt;
            dfs1 ( v, u );
            int x = find ( color[v] ), y = find ( color[u] );
            if ( color[v] != color[u] && x != y ) {
                add_co ( color[v], color[u] );
                add_co ( color[u], color[v] );
                unionn ( x, y );
            }
        }
    }
    
    int dis[100005], rt;
    void dfs ( int u, int f ) {
        for ( int i = h_co[u]; i; i = nex_co[i] ) {
            int v = tov_co[i];
            if ( v == f ) continue;
            dis[v] = dis[u] + 1;
            dfs ( v, u );
        }
        if ( dis[u] > dis[rt] ) rt = u;
    }
    
    int main ( ) {
        freopen ( "color.in", "r", stdin );
        freopen ( "color.out", "w", stdout );
        int T;
        scanf ( "%d", &T );
        while ( T -- ) {
            G.clear ( );
            stot = 0, stot_co = 0, opt = 0;
            scanf ( "%d", &n );
            for ( int i = 1; i <= n; i ++ ) h[i] = 0;
            for ( int i = 1; i <= n; i ++ ) h_co[i] = 0;
            for ( int i = 1; i <= n; i ++ ) color[i] = 0;
            for ( int i = 1; i <= n; i ++ )    scanf ( "%d", &a[i] );
            for ( int i = 1; i < n; i ++ ) {
                int u, v;
                scanf ( "%d%d", &u, &v );
                add ( u, v );
                add ( v, u );
            }
            for ( int i = 1; i <= n; i ++ ) fa[i] = i;
            color[1] = ++opt;
            dfs1 ( 1, 0 );
            rt = 0;
            for ( int i = 1; i <= opt; i ++ ) dis[i] = 0;
            dfs ( 1, 0 );
            for ( int i = 1; i <= opt; i ++ ) dis[i] = 0;
            dfs ( rt, 0 );
            printf ( "%d
    ", ( dis[rt] + 1 ) / 2 );
        }
        return 0;
    }

    小模拟,考试的时候觉得状态太多,不可能重复???然后就没有写$vis$打标记,下来一加就...(辛酸泪QAQ

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<queue>
    #include<map>
    using namespace std;
    
    int n, t[35], G[400][400];
    map < int, int > mx, my;
    
    struct node {
        int x, y, opt, id;
        node ( int x = 0, int y = 0, int opt = 0, int id = 0 ) :
            x ( x ), y ( y ), opt ( opt ), id ( id ) {    }
    };
    queue < node > q;
    int vis[404][404][31][9];
    
    struct QAQ {
        int x, y;
        QAQ ( int x = 0, int y = 0 ) :
            x ( x ), y ( y ) { }
    };
    
    QAQ print ( int x, int y, int opt, int id ) {
        for ( int i = 1; i <= t[id]; i ++ ) {
            G[x][y] = 1;
            x = x + mx[opt]; y = y + my[opt];
        }
        return QAQ ( x - mx[opt], y - my[opt] );
    }
    
    void BFS ( int sx, int sy ) {
        q.push ( node ( sx, sy + t[1] - 1, 0, 1 ) );
        QAQ a = print ( sx, sy, 0, 1 );
        vis[sx][sy+t[1]-1][1][0] = 1; 
        while ( !q.empty ( ) ) {
            node x = q.front ( ); q.pop ( );
            if ( x.id == n ) break;
            if ( x.opt != -3 && x.opt != 4 ) {
                int L = x.opt - 1, R = x.opt + 1;
                int id = x.id + 1;
                int lsx = x.x + mx[L], lsy = x.y + my[L];
                int rsx = x.x + mx[R], rsy = x.y + my[R];
                QAQ ll = print ( lsx, lsy, L, id );
                QAQ rr = print ( rsx, rsy, R, id );
                if ( !vis[ll.x][ll.y][id][L] ) {
                    q.push ( node ( ll.x, ll.y, L, id ) );
                    vis[ll.x][ll.y][id][L] = 1;
                }
                if ( !vis[rr.x][rr.y][id][R] ) {
                    q.push ( node ( rr.x, rr.y, R, id ) );
                    vis[rr.x][rr.y][id][R] = 1;
                }
            } else if ( x.opt == -3 ) {
                int L = 4, R = x.opt + 1;
                int id = x.id + 1;
                int lsx = x.x + mx[L], lsy = x.y + my[L];
                int rsx = x.x + mx[R], rsy = x.y + my[R];
                QAQ ll = print ( lsx, lsy, L, id );
                QAQ rr = print ( rsx, rsy, R, id );
                if ( !vis[ll.x][ll.y][id][L] ) {
                    q.push ( node ( ll.x, ll.y, L, id ) );
                    vis[ll.x][ll.y][id][L] = 1;
                }
                if ( !vis[rr.x][rr.y][id][R] ) {
                    q.push ( node ( rr.x, rr.y, R, id ) );
                    vis[rr.x][rr.y][id][R] = 1;
                }
            } else if ( x.opt == 4 ) {
                int L = x.opt - 1, R = -3;
                int id = x.id + 1;
                int lsx = x.x + mx[L], lsy = x.y + my[L];
                int rsx = x.x + mx[R], rsy = x.y + my[R];
                QAQ ll = print ( lsx, lsy, L, id );
                QAQ rr = print ( rsx, rsy, R, id );
                if ( !vis[ll.x][ll.y][id][L] ) {
                    q.push ( node ( ll.x, ll.y, L, id ) );
                    vis[ll.x][ll.y][id][L] = 1;
                }
                if ( !vis[rr.x][rr.y][id][R] ) {
                    q.push ( node ( rr.x, rr.y, R, id ) );
                    vis[rr.x][rr.y][id][R] = 1;
                }
            }
        }
    }
    
    int main ( ) {
        freopen ( "grow.in", "r", stdin );
        freopen ( "grow.out", "w", stdout );
        scanf ( "%d", &n );
        mx[0] = 0, mx[1] = 1, mx[2] = 1, mx[3] = 1, mx[4] = 0, mx[-1] = -1, mx[-2] = -1, mx[-3] = -1;
        my[0] = 1, my[1] = 1, my[2] = 0, my[3] = -1, my[4] = -1, my[-1] = 1, my[-2] = 0, my[-3] = -1;
        for ( int i = 1; i <= n; i ++ )    scanf ( "%d", &t[i] );
        BFS ( 150, 150 );
        int ans = 0;
        for ( int i = 0; i < 400; i ++ )
            for ( int j = 0; j < 400; j ++ )
                if ( G[i][j] ) ans ++;
        printf ( "%d", ans );
    }

     

    有关串用$dp$解决是很显然的(?$idy$题解原话),定义$dp[s][t]$表示从$s$状态转移到$t$状态最少的修改数。关于状态定义代码有注释。用线段树维护区间状态转移$dp$值,每个节点保存一个矩阵,节点合并时类似$floyed$,枚举断点转移。查询时查询区间即可。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define oo 0x3f3f3f3f
    using namespace std;
    
    //    0    1    2    3    4 
    //    $    2    20    201    2017
    
    const int N = 100005;
    
    struct Info {
        int dp[5][5];
        void init ( int cur ) {
            memset ( dp, 0x3f, sizeof ( dp ) );
            if ( cur == 3 || cur == 4 || cur == 5 || cur == 8 || cur == 9 ) {
                for ( int i = 0; i <= 4; i ++ )
                    dp[i][i] = 0;
            } else if ( cur == 2 ) {
                dp[0][0] = 1; dp[0][1] = 0;
                dp[1][1] = dp[2][2] = dp[3][3] = dp[4][4] = 0;
            } else if ( cur == 0 ) {
                dp[1][2] = 0;
                dp[1][1] = 1;
                dp[0][0] = dp[2][2] = dp[3][3] = dp[4][4] = 0;
            } else if ( cur == 1 ) {
                dp[2][2] = 1;
                dp[2][3] = 0;
                dp[0][0] = dp[1][1] = dp[3][3] = dp[4][4] = 0;
            } else if ( cur == 7 ) {
                dp[3][3] = 1;
                dp[3][4] = 0;
                dp[0][0] = dp[1][1] = dp[2][2] = dp[4][4] = 0;
            } else if ( cur == 6 ) {
                dp[3][3] = 1;
                dp[4][4] = 1;
                dp[0][0] = dp[1][1] = dp[2][2] = 0;
            }
        }
    };
    
    Info operator + ( const Info &r, const Info &s ) {
        Info rt;
        memset ( &rt, 0x3f, sizeof ( rt ) );
        for ( int i = 0; i <= 4; i ++ )
            for ( int j = 0; j <= 4; j ++ )
                for ( int k = i; k <= j; k ++ ) {
                    rt.dp[i][j] = min ( rt.dp[i][j], r.dp[i][k] + s.dp[k][j] );
                }
        return rt;
    }
    
    struct node {
        Info info;
        node *ls, *rs;
    } pool[N*4], *tail = pool, *root;
    
    int a[N];
    char s[N];
    node *build ( int l, int r ) {
        node *nd = ++tail;
        if ( l == r ) {
            nd -> info.init ( a[l] );
            return nd;
        }
        int mid = ( l + r ) >> 1;
        nd -> ls = build ( l, mid );
        nd -> rs = build ( mid + 1, r );
        nd -> info = nd -> ls -> info + nd -> rs -> info;
        return nd;
    }
    
    Info query ( node *nd, int l, int r, int L, int R ) {
        if ( l >= L && r <= R ) return nd -> info;
        int mid = ( l + r ) >> 1;
        if ( R <= mid )    return query ( nd -> ls, l, mid, L, R );
        else if ( L > mid ) return query ( nd -> rs, mid + 1, r, L, R );
        else return query ( nd -> ls, l, mid, L, R ) + query ( nd -> rs, mid + 1, r, L, R );
    }
    
    int n, q;
    int query ( int l, int r ) {
        Info info = query ( root, 1, n, l, r );
        return info.dp[0][4] == oo ? -1 : info.dp[0][4];
    }
    
    int main ( ) {
        freopen ( "year.in", "r", stdin );
        freopen ( "year.out", "w", stdout );
        scanf ( "%s", s + 1 );
        scanf ( "%d", &q );
        n = strlen ( s + 1 );
        for ( int i = 1; i <= n; i ++ )
            a[i] = s[i] - '0';
        root = build ( 1, n );
        while ( q -- ) {
            int l, r;
            scanf ( "%d%d", &l, &r );
            printf ( "%d
    ", query ( l, r ) );
        }
        return 0;
    }
  • 相关阅读:
    接口和抽象的区别
    接口
    jquery Ajax提交表单数据
    SQL 检查 是否存在 表 临时表
    ASP.NET MVC 设置Area中 Controller 的方法 默认启动页
    json 序列化为数组
    C# Lamda中类似于SQL 中的 In 功能
    各种webservice调用地址
    ASP.NET获取客户端IP地址
    C#反射机制 Type类型
  • 原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9537827.html
Copyright © 2011-2022 走看看