zoukankan      html  css  js  c++  java
  • 【BZOJ】4318: OSU!【期望DP】

    4318: OSU!

    Time Limit: 2 Sec  Memory Limit: 128 MB
    Submit: 1473  Solved: 1174
    [Submit][Status][Discuss]

    Description

    osu 是一款群众喜闻乐见的休闲软件。 
    我们可以把osu的规则简化与改编成以下的样子: 
    一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
    现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 
     
     

    Input

    第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 
     
     

    Output

    只有一个实数,表示答案。答案四舍五入后保留1位小数。 
     

    Sample Input

    3
    0.5
    0.5
    0.5

    Sample Output

    6.0

    HINT

    【样例说明】 

    000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 

    N<=100000

    Solution

    期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)

    设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。

    Code

    #include<bits/stdc++.h>
    using namespace std;
    
    double x[100005], x2[100005], dp[1000005], a[100005];
    
    int main() {
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; i ++)    scanf("%lf", &a[i]);
        for(int i = 1; i <= n; i ++) {
            x[i] = (x[i-1] + 1) * a[i];
            x2[i] = (x2[i-1] + 2 * x[i-1] + 1) * a[i];
            dp[i] = dp[i-1] + (3 * x2[i-1] + 3 * x[i-1] + 1) * a[i];
        }
        printf("%0.1lf", dp[n]);
        return 0;
    }
  • 相关阅读:
    被劣质代码“残害”的这些年
    17 个案例带你 5 分钟搞定 Linux 正则表达式
    nginx配置详解
    探究 Go 语言 defer 语句的三种机制
    git 生成ssh
    关于Laravel 与 Nginx 限流策略防止恶意请求
    保持开源项目健康运行并减少压力的 10 件事
    带着canvas去流浪系列之三 绘制饼图
    无码系列-6 数据缓存设计经验谈
    IoT开发精英实战营招募啦!速来报名!
  • 原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9779432.html
Copyright © 2011-2022 走看看