zoukankan      html  css  js  c++  java
  • 【11.5校内测试】【倒计时5天】【DP】【二分+贪心check】【推式子化简+线段树】

    Solution

    非常巧妙的建立DP方程。

    据dalao们说题目明显暗示根号复杂度??(反正我是没看出来

    因为每次分的块大小一定不超过$sqrt n$,要不然直接每个位置开一个块答案都才为$n$。

    于是大佬们想到用一个非常巧妙的数组$pos[j]$,表示顺推到当前位置$i$时,以$i$作为右端点,区间出现了$j$个颜色的左端点的位置。

    于是每次转移就变成了$dp[i]=min(dp[pos[j]-1]+j*j)$,而不需要把之前全部枚举。$j$的范围就是$<=sqrt n$的。

    所以每次新到一个位置,就对于每个$j$看是否有新的贡献,记录$cnt[j]$表示$pos[j]$到$i$当前实际有多少个颜色。

    如果$cnt[j]>j$表示当前$pos[j]$需要往后移动更新,那么每次往后一位一位暴力移动查询当前位置是否可以作为$pos[j]$,就是判断这个位置之后,$i$之前是否还出现了这个位置的颜色,如果出现了那么这个位置就不能作为$pos[j]$,因为它后面还有贡献。(据说均摊复杂度O(n)??)

    细节通过双向链表处理。

    Code

    #include<bits/stdc++.h>
    #define LL long long
    #define RG register
    using namespace std;
    
    LL dp[40005];
    int nxt[40005], a[40005], pre[40005], las[40005], pos[40005], cnt[40006];
    int n, m;
    
    int main() {
        freopen("cleanup.in", "r", stdin);
        freopen("cleanup.out", "w", stdout);
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i ++) {
            scanf("%d", &a[i]);
            pre[i] = las[a[i]];
            nxt[las[a[i]]] = i;
            las[a[i]] = i;
            nxt[i] = n + 1;
        }
        memset(dp, 0x3f3f3f3f, sizeof(dp));    dp[0] = 0;
        int siz = sqrt(n);    for(int i = 1; i <= siz; i ++)    pos[i] = 1;
        for(RG int i = 1; i <= n; i ++) {
            for(RG int j = 1; j <= siz; j ++) {
                if(pre[i] < pos[j])    cnt[j] ++;
                if(cnt[j] > j) {
                    cnt[j] --;
                    while(nxt[pos[j]] < i)    pos[j] ++;
                    pos[j] ++;
                }
                dp[i] = min(dp[pos[j] - 1] + j * j, dp[i]);
            }
        }
        printf("%lld", dp[n]);
        return 0;
    }

    Solution

    二分性很明显,但是check竟然是用搜索回溯处理???真实震惊

    搜索大概就是每次在剩下没有被覆盖的点中找到最靠左、最靠右、最靠下、最靠上四个极点位置,然后每次贪心往四个角(左上、左下、右上、右下)填矩阵,更新剩下没覆盖的点,搜三层回来即可.....

    真的好玄学啊QAQ但是就是过了QAQ

    Code

    #include<bits/stdc++.h>
    #define oo 0x3f3f3f3f
    #define LL long long
    using namespace std;
    
    int n, xmi, xma, ymi, yma, MA;
    
    struct Node {
        LL x, y;
    } tr[20005];
    bool cmp1(Node a, Node b) { return a.x < b.x; }
    bool cmp2(Node a, Node b) { return a.y < b.y; }
    
    bool flag, vis[20005];
    LL now;
    
    void dfs(int dep, int tot) {
        if(tot == n) { flag = 1;    return ; }
        if(dep == 3)    return ;
        bool used[20005] = {0};
        LL maxx = -oo, minx = oo, maxy = -oo, miny = oo;
        for(int i = 1; i <= n; i ++) {
            if(vis[i])    continue;
            maxx = max(maxx, tr[i].x);    minx = min(minx, tr[i].x);
            maxy = max(maxy, tr[i].y);    miny = min(miny, tr[i].y);
        }
        
        int cnt = 0;
        
        LL xl = minx, xr = minx + now, yl = miny, yr = miny + now;    cnt = 0;
        for(int i = 1; i <= n; i ++) {
            if(vis[i])    continue;
            if(tr[i].x <= xr && tr[i].x >= xl && tr[i].y >= yl && tr[i].y <= yr) {
                vis[i] = 1;    used[i] = 1; cnt ++;
            }
        }
        dfs(dep + 1, tot + cnt);    if(flag)    return ;
        for(int i = 1; i <= n; i ++)    if(used[i])    vis[i] = used[i] = 0;
        
        xl = minx, xr = minx + now, yl = maxy - now, yr = maxy;    cnt = 0;
        for(int i = 1; i <= n; i ++) {
            if(vis[i])    continue;
            if(tr[i].x <= xr && tr[i].x >= xl && tr[i].y >= yl && tr[i].y <= yr) {
                vis[i] = 1;    used[i] = 1; cnt ++;
            }
        }
        dfs(dep + 1, tot + cnt);    if(flag)    return ;
        for(int i = 1; i <= n; i ++)    if(used[i])    vis[i] = used[i] = 0;
    
        xl = maxx - now, xr = maxx, yl = maxy - now, yr = maxy;    cnt = 0;
        for(int i = 1; i <= n; i ++) {
            if(vis[i])    continue;
            if(tr[i].x <= xr && tr[i].x >= xl && tr[i].y >= yl && tr[i].y <= yr) {
                vis[i] = 1;    used[i] = 1; cnt ++;
            }
        }
        dfs(dep + 1, tot + cnt);    if(flag)    return ;
        for(int i = 1; i <= n; i ++)    if(used[i])    vis[i] = used[i] = 0;
        
        xl = maxx - now, xr = maxx, yl = miny, yr = miny + now;    cnt = 0;
        for(int i = 1; i <= n; i ++) {
            if(vis[i])    continue;
            if(tr[i].x <= xr && tr[i].x >= xl && tr[i].y >= yl && tr[i].y <= yr) {
                vis[i] = 1;    used[i] = 1; cnt ++;
            }
        }
        dfs(dep + 1, tot + cnt);    if(flag)    return ;
        for(int i = 1; i <= n; i ++)    if(used[i])    vis[i] = used[i] = 0;
    }
    
    bool check(LL mid) {
        now = mid;    flag = 0;
        for(int i = 1; i <= n; i ++)    vis[i] = 0;
        dfs(0, 0);
        return flag;
    }
    
    LL erfen() {
        LL l = 0, r = 100000000000, ans;
        while(l <= r) {
            LL mid = (l + r) >> 1;
            if(check(mid))    ans = mid, r = mid - 1;
            else    l = mid + 1;
        }
        return ans;
    }
    
    int main() {
        freopen("cover.in", "r", stdin);
        freopen("cover.out", "w", stdout);
        scanf("%d", &n);
        for(int i = 1; i <= n; i ++)
            scanf("%lld%lld", &tr[i].x, &tr[i].y);
        LL ans = erfen();
        printf("%lld", ans);
        return 0;
    }

    Solution

    区间修改??发现没那么简单QAQ,是求多个区间的和,没办法直接修改就快速求出答案。

    所以推一推式子将$n^3$优化到$n^2$,要求的区间的区间和实际上可以由每条边的贡献算出来:$sum_{i=L}^{R}{v[i]*(i-L+1)*(R-i+1)}$,此处$R$是事先$--$了的,因为$R-R+1$的边不能被算入贡献。

    化简得$sum{iv[i] * (L + R) - i^2v[i] + v[i] * (R - L * R + 1 - L)}$所以要维护的变量实际上只有$iv[i].i^2v[i].v[i]$三个的区间和即可,用一颗线段树结构体就好辣。

    全都要开longlong才可以!!

    Code

    #include<bits/stdc++.h>
    #define LL long long
    using namespace std;
    
    LL n, m;
    
    LL gcd(LL a, LL b) {
        return b == 0 ? a : gcd(b, a % b);
    }
    
    struct Node {
        LL iv, v, iv2;
        Node operator + (const Node &a) const {
            Node c;
            c.iv = iv + a.iv;    c.v = v + a.v;    c.iv2 = iv2 + a.iv2;
            return c;
        }
    } TR[400005];
    
    LL tag[400005], iv[100005], iv2[100005];
    
    void push_down(LL nd, LL l, LL r) {
        if(tag[nd]) {
            LL d = tag[nd], mid = (l + r) >> 1;
            TR[nd << 1].iv += d * (iv[mid] - iv[l - 1]);
            TR[nd << 1].iv2 += d * (iv2[mid] - iv2[l - 1]);
            TR[nd << 1].v += d * (mid - l + 1);
            TR[nd << 1 | 1].iv += d * (iv[r] - iv[mid]);
            TR[nd << 1 | 1].iv2 += d * (iv2[r] - iv2[mid]);
            TR[nd << 1 | 1].v += d * (r - mid);
            tag[nd << 1] += d, tag[nd << 1 | 1] += d;    tag[nd] = 0;
        }
    }
    
    void update(LL nd) {
        TR[nd] = TR[nd << 1] + TR[nd << 1 | 1];
    }
    
    void modify(LL nd, LL l, LL r, LL L, LL R, LL d) {
        if(l >= L && r <= R) {
            TR[nd].iv += d * (iv[r] - iv[l - 1]);
            TR[nd].iv2 += d * (iv2[r] - iv2[l - 1]);
            TR[nd].v += d * (r - l + 1);
            tag[nd] += d;
            return ;
        }
        push_down(nd, l, r);    LL mid = (l + r) >> 1;
        if(L <= mid)    modify(nd << 1, l, mid, L, R, d);
        if(R > mid)        modify(nd << 1 | 1, mid + 1, r, L, R, d);
        update(nd);
    }
    
    Node query(LL nd, LL l, LL r, LL L, LL R) {
        if(l >= L && r <= R)    return TR[nd];
        push_down(nd, l, r);
        LL mid = (l + r) >> 1;    Node ans;    ans.iv = ans.iv2 = ans.v = 0;
        if(L <= mid)    ans = ans + query(nd << 1, l, mid, L, R);
        if(R > mid)        ans = ans + query(nd << 1 | 1, mid + 1, r, L, R);
        return ans;
    }
    
    void init() {
        for(LL i = 1; i <= n; i ++) {
            iv[i] = iv[i - 1] + i;
            iv2[i] = iv2[i - 1] + i * i;
        }
    }
    
    int main() {
        freopen("roadxw.in", "r", stdin);
        freopen("roadxw.out", "w", stdout);
        scanf("%lld%lld", &n, &m);
        init();
        for(LL t = 1; t <= m; t ++) {
            char s[10];    LL L, R, V;
            scanf("%s", s);
            if(s[0] == 'C') {
                scanf("%lld%lld%lld", &L, &R, &V);
                modify(1, 1, n, L, R - 1, V);
            } else {
                scanf("%lld%lld", &L, &R);
                R --;
                Node a = query(1, 1, n, L, R);
                LL ans = a.iv * (L + R) - a.iv2 + a.v * (R - L * R + 1 - L);
                LL tot = R - L + 2;
                LL ans2 = tot * (tot - 1) / 2;
                LL d = gcd(ans, ans2);
                ans /= d, ans2 /= d;
                printf("%lld/%lld
    ", ans, ans2);
            }
        }
        return 0;
    }
  • 相关阅读:
    LeetCode刷题记录2020-10-07之动态规划入门!!!线性DP(二)
    LeetCode刷题记录2020-10-06之动态规划入门!!!线性DP
    LeetCode刷题记录2020-10-05之Double Pointer!!!
    Python核心编程之属性查找过程!
    Python核心编程之元类!
    Python配置文件的导入方式和源码分析!
    大数据架构入门之二:埋点数据流程
    day46 css第二part
    day44天 HTTP协议 和前端html协议
    day39 视图 触发器 事务 存储过程 函数 流程控制 索引与慢查询优化
  • 原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9910180.html
Copyright © 2011-2022 走看看