zoukankan      html  css  js  c++  java
  • 二叉树遍历汇总

    二叉树的遍历

    二叉树的遍历有递归遍历,分别为前序遍历,中序遍历,后序遍历。
    这三种遍历的差别,是根节点的访问顺序,

    1. 前序遍历
      先访问根节点,然后访问左子树,最后访问右子树
    2. 中序遍历
      先访问左子树,然后访问根节点,最后访问右子树
    3. 后序遍历
      先访问左子树,然后访问右子树,最后访问根节点

    非递归遍历,上述遍历都可以将递归遍历,改为非递归的遍历,本文介绍,层次遍历,
    就是一层一层地去遍历。本文的层次遍历有两种方式,如下:
    4. 从上至下,一个节点一个节点的去打印,打印的时候,看不出层次。
    5. 从上至下,一个节点一个节点的去打印,打印是分层次的。
    层次遍历主要用到queue的数据结构,每访问到一个节点时,如果它有左节点,就放入队列,
    如果它有右节点就放入队列,这样便可以遍历完整棵树了。

    针对以上5中遍历,用如下的例子说明,
    有如下的一个二叉树:

    遍历结果分别为:

    1. 1 2 4 5 3 6 7
    2. 4 2 5 1 6 3 7
    3. 4 5 2 6 7 3 1
      4 1 2 3 4 5 6 7
      5 . 1
      2 3
      4 5 6 7

    实现的代码如下:

    #include<iostream>
    #include<vector>
    #include<queue>
    using namespace std;
    
    struct TreeNode {
        int val;
        struct TreeNode *left;
        struct TreeNode *right;
         TreeNode(int x):val(x), left(NULL), right(NULL) {
    }};
    int i = 0;
    struct TreeNode *buildTree(int n)
    {
        if (i == n) {
    	return NULL;
        }
        /*
           if( (i&0x1) ){
           ++i;
           return NULL;
           }
         */
    
    
        struct TreeNode *node;
        node = new struct TreeNode (i);
        // node->val = i;
        ++i;
        node->left = buildTree(n);
        node->right = buildTree(n);
        return node;
    
        /*
           struct TreeNode *root= NULL,*p =NULL,*node;
           node = new struct TreeNode();
           node->val = i;
           node->left = NULL:
           node->right = NULL;
           ++i;
    
           if( root == NULL){
           root = p = node;
           continue;
           }
           if(p->left == NULL){
           p->left = node;
           }else{
    
           }
    
           return root;
         */
    }
    
    struct TreeNode *buildTree2()
    {
        struct TreeNode *root = NULL, *p = NULL, *node;
        struct TreeNode *nodes[8];
        for (int i = 1; i < 8; i++) {
    	nodes[i] = new struct TreeNode (i);
        }
        nodes[1]->left = nodes[2];
        nodes[1]->right = nodes[3];
        nodes[2]->left = nodes[4];
        nodes[2]->right = nodes[5];
        nodes[3]->left = nodes[6];
        nodes[3]->right = nodes[7];
        return nodes[1];
    }
    
    class Solution {
      public:
        void PreorderTraversal(TreeNode * root) {
    	if (root == NULL)
    	    return;
    	cout << root->val << " ";
    
    	PreorderTraversal(root->left);
    	PreorderTraversal(root->right);
        }
    
       void InorderTraversal(TreeNode * root) {
    	if (root == NULL)
    	    return;
    
    	InorderTraversal(root->left);
    	cout << root->val << " ";
    	InorderTraversal(root->right);
        }
    
        void PostorderTraversal(TreeNode * root) {
    	if (root == NULL)
    	    return;
    
    	PostorderTraversal(root->left);
    	PostorderTraversal(root->right);
    	cout << root->val << " ";
        }
    
    
        vector < int >PrintFromTopToBottom(TreeNode * root) {
    	vector < int >res;
    	if (root == NULL)
    	    return res;
    
    	queue < TreeNode * >q;
    	q.push(root);
    	cout << "PrintFromTopToBottom:";
    	while (!q.empty()) {
    	    TreeNode *node = q.front();
    	    cout << node->val << " ";
    	    q.pop();
    	    res.push_back(node->val);
    	    if (node->left != NULL) {
    		q.push(node->left);
    	    }
    	    if (node->right != NULL) {
    		q.push(node->right);
    	    }
    
    	}
    	cout << endl;
    	return res;
        }
    
        vector < int >PrintTreeWithLevel(TreeNode * root) {
    	vector < int >res;
    	if (root == NULL)
    	    return res;
    
    	queue < TreeNode * >q;
    	q.push(root);
    	int curLevel = 1;
    	int count = 0;
    	int nextLevel = 0;
    	cout << "PrintTreeWithLevel;" << endl;
    	while (!q.empty()) {
    	    TreeNode *node = q.front();
    	    cout << node->val << " ";
    	    q.pop();
    	    res.push_back(node->val);
    	    ++count;
    	    /*
    	       if(count == curLevel){
    	       cout<<endl;
    	       curLevel = nextLevel;                
    	       nextLevel = 0; 
    	       count = 0;
    	       } */
    
    	    if (node->left != NULL) {
    		q.push(node->left);
    		++nextLevel;
    	    }
    	    if (node->right != NULL) {
    		q.push(node->right);
    		++nextLevel;
    	    }
    	    if (count == curLevel) {
    		cout << endl;
    		curLevel = nextLevel;
    		nextLevel = 0;
    		count = 0;
    	    }
    
    	}
    	return res;
        }
    
    
    
    
    };
    
    
    
    int main()
    {
        Solution s;
        TreeNode *root = NULL;
        int n = 5;
        // root = buildTree(5);
        root = buildTree2();
    
        cout << "preorder:";
        s.PreorderTraversal(root);
        cout << endl;
    
        cout << "inorder:";
        s.InorderTraversal(root);
        cout << endl;
    
        cout << "postorder:";
        s.PostorderTraversal(root);
        cout << endl;
    
        s.PrintFromTopToBottom(root);
        // cout<<"PrintTreeWithLevel:"<<endl;
        s.PrintTreeWithLevel(root);
        return 0;
    }
    
    

    程序结果如下:

  • 相关阅读:
    缺席多年的东哥,重回博客了
    使用VMware安装CentOS 7
    Linux CentOS 7 搭建 Tomcat 8 服务器
    海思HI3518EV200+AR0130开发板DIY——前篇
    Keyshot+AD渲染PCB效果图
    ESP8266/ESP32模块晶振频偏调试
    关于摄像头PCB图设计经验谈
    docker容器虚拟化技术
    数据分析章节(一):初始数学之美
    Nginx:反向代理
  • 原文地址:https://www.cnblogs.com/wanshuafe/p/11701642.html
Copyright © 2011-2022 走看看