#include "pch.h" #include <opencv2/core/core.hpp> #include "opencv2/imgproc/imgproc.hpp" #include <opencv2/highgui/highgui.hpp> #include <iostream> using namespace cv; using namespace std; int main(){ Mat image; image = imread("1.jpg", IMREAD_COLOR); if (!image.data){ cout << "Could not open or find the image" << endl; return -1; } // threshold to get mask int threshold_value = 10; int max_BINARY_value = 256; Mat mask; mask = imread("mask.png", 0); // mask image Mat img_masked; image.copyTo(img_masked, mask); imshow("image", image); imshow("mask", mask); imshow("img_masked", img_masked); waitKey(0); return 0; }
#include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include<opencv2/face.hpp> #include<iostream> #include<math.h> #include <string> #include<fstream> using namespace cv::face; using namespace cv; using namespace std; using namespace cv::xfeatures2d; int main() { Mat src = imread("/Users/war/Desktop/2.jpeg"); imshow("src", src); //组装数据 int width = src.cols; int height = src.rows; int samplecount = width * height; int dims = src.channels(); //行数为src的像素点数,列数为通道数,每列数据分别为src的bgr,从上到下 从左到右顺序读数据 Mat points(samplecount, dims, CV_32F, Scalar(10)); int ind = 0; for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { ind = row * width + col;// Vec3b bgr = src.at<Vec3b>(row, col); points.at<float>(ind, 0) = static_cast<int>(bgr[0]); points.at<float>(ind, 1) = static_cast<int>(bgr[1]); points.at<float>(ind, 2) = static_cast<int>(bgr[2]); } } //运行kmeans int numCluster = 4; Mat labels; Mat centers; TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers); //去背景+遮罩生成 Mat mask = Mat::zeros(src.size(), CV_8UC1); int index = src.rows * 2 + 2;//不取边缘的左上点,往里靠2个位置 int cindex = labels.at<int>(index, 0); int height1 = src.rows; int width1 = src.cols; Mat dst;//人的轮廓周围会有一些杂点,所以需要腐蚀和高斯模糊取干扰 src.copyTo(dst); for (int row = 0; row < height1; row++) { for (int col = 0; col < width1; col++) { index = row * width1 + col; int label = labels.at<int>(index, 0); if (label == cindex) { dst.at<Vec3b>(row, col)[0] = 0; dst.at<Vec3b>(row, col)[1] = 0; dst.at<Vec3b>(row, col)[2] = 0; mask.at<uchar>(row, col) = 0; } else { dst.at<Vec3b>(row, col) = src.at<Vec3b>(row, col); mask.at<uchar>(row, col) = 255;//人脸部分设为白色,以便于下面的腐蚀与高斯模糊 } } } imshow("dst", dst); imshow("mask", dst); //腐蚀+高斯模糊 Mat k = getStructuringElement(MORPH_RECT, Size(3, 3)); erode(mask, mask, k); GaussianBlur(mask, mask, Size(3, 3), 0, 0); imshow("gaosimohu", mask); //通道混合 RNG rng(12345); Vec3b color; color[0] = 180;//rng.uniform(0, 255); color[1] =180;//rng.uniform(0, 255); color[2] =238;//rng.uniform(0, 255); Mat result(src.size(), src.type()); double w = 0.0; int b = 0, g = 0, r = 0; int b1 = 0, g1 = 0, r1 = 0; int b2 = 0, g2 = 0, r2 = 0; double time = getTickCount(); for (int row = 0; row < height1; row++) { for (int col = 0; col < width; col++) { int m = mask.at<uchar>(row, col); if (m == 255) { result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);//前景 } else if (m == 0) { result.at<Vec3b>(row, col) = color; // 背景 } else {//因为高斯模糊的关系,所以mask元素的颜色除了黑白色还有黑白边缘经过模糊后的非黑白值 w = m / 255.0; b1 = src.at<Vec3b>(row, col)[0]; g1 = src.at<Vec3b>(row, col)[1]; r1 = src.at<Vec3b>(row, col)[2]; b2 = color[0]; g2 = color[0]; r2 = color[0]; b = b1 * w + b2 * (1.0 - w); g = g1 * w + g2 * (1.0 - w); r = r1 * w + r2 * (1.0 - w); result.at<Vec3b>(row, col)[0] = b;//最终边缘颜色值 result.at<Vec3b>(row, col)[1] = g; result.at<Vec3b>(row, col)[2] = r; } } } cout << "time=" << (getTickCount() - time) / getTickFrequency() << endl; imshow("backgroud repalce", result); waitKey(0); }