zoukankan      html  css  js  c++  java
  • (最大团) poj 1419

    Graph Coloring
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4370   Accepted: 1980   Special Judge

    Description

    You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black. 


     
    Figure 1: An optimal graph with three black nodes 

    Input

    The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

    Output

    The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

    Sample Input

    1
    6 8
    1 2
    1 3
    2 4
    2 5
    3 4
    3 6
    4 6
    5 6

    Sample Output

    3
    1 4 5

    利用性质,最大团等于补图最大独立集
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<stack>
    using namespace std;
    int n,mp[55][55],vis[55],cnt,bestn;
    void dfs(int x)
    {
        if(x>n)
        {
            if(cnt>bestn)
                bestn=cnt;
            return ;
        }
        bool ok=true;
        for(int i=1;i<x;i++)
        {
            if(vis[i]&&!mp[i][x])
            {
                ok=false;
                break;
            }
        }
        if(ok)
        {
            vis[x]=1;
            cnt++;
            dfs(x+1);
            cnt--;
        }
        if(cnt+n-x>bestn)
            vis[x]=0,dfs(x+1);
    }
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            if(n==0)
                break;
            cnt=bestn=0;
            memset(vis,0,sizeof(vis));
            memset(mp,0,sizeof(mp));
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                    scanf("%d",&mp[i][j]);
            }
            dfs(1);
            printf("%d
    ",bestn);
        }
        return 0;
    }
    

      

  • 相关阅读:
    EffectiveC++ 第4章 设计与声明
    EffectiveC++ 第3章 资源管理
    EffectiveC++ 第2章 构造/析构/赋值运算
    EffectiveC++ 第1章 让自己习惯C++
    C++实现离散数学的关系类,支持传递闭包运算
    Vi编辑器入门
    如何查看jdk的版本是32位还是64位
    跨域服务调用基本概念及解决方法
    解决MyEclipse不编译的方法
    网上拒绝复制方法解决
  • 原文地址:https://www.cnblogs.com/water-full/p/4461034.html
Copyright © 2011-2022 走看看