zoukankan      html  css  js  c++  java
  • (树形DP) poj 3659

    Cell Phone Network
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5916   Accepted: 2119

    Description

    Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires him to set up cell phone towers on his N (1 ≤ N ≤ 10,000) pastures (conveniently numbered 1..N) so they can all communicate.

    Exactly N-1 pairs of pastures are adjacent, and for any two pastures A and B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B) there is a sequence of adjacent pastures such that is the first pasture in the sequence and B is the last. Farmer John can only place cell phone towers in the pastures, and each tower has enough range to provide service to the pasture it is on and all pastures adjacent to the pasture with the cell tower.

    Help him determine the minimum number of towers he must install to provide cell phone service to each pasture.

    Input

    * Line 1: A single integer: N
    * Lines 2..N: Each line specifies a pair of adjacent pastures with two space-separated integers: A and B

    Output

    * Line 1: A single integer indicating the minimum number of towers to install

    Sample Input

    5
    1 3
    5 2
    4 3
    3 5
    

    Sample Output

    2
    

    Source

     

    题意:求树的最小支配集

    求树最小支配集。
                   设dp[u][0]表示选择u这个点,且以u为根的子树完全被覆盖的最小个数。
                   设dp[u][1]表示u这个点被其儿子覆盖,且以u为根的子树完全被覆盖的最小个数。
                   设dp[u][2]表示u这个点被其父亲覆盖,且以u为根的子树完全被覆盖的最小个数。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<set>
    #define INF 100000000
    using namespace std;
    vector<int> e[10005];
    int dp[10005][3];
    int n;
    void dfs(int u,int father)
    {
        dp[u][0]=1;
        dp[u][1]=INF;
        dp[u][2]=0;
        for(int i=0;i<e[u].size();i++)
        {
            int v=e[u][i];
            if(v==father)
                continue;
            dfs(v,u);
            dp[u][0]+=min(dp[v][0],dp[v][2]);
            dp[u][2]+=min(dp[v][0],dp[v][1]);
        }
        for(int i=0;i<e[u].size();i++)
        {
            int v=e[u][i];
            if(v==father)
                continue;
            dp[u][1]=min(dp[u][1],dp[u][2]-min(dp[v][0],dp[v][1])+dp[v][0]);
        }
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<n;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            e[x].push_back(y);
            e[y].push_back(x);
        }
        dfs(1,-1);
        printf("%d
    ",min(dp[1][0],dp[1][1]));
        return 0;
    }
    

      

  • 相关阅读:
    大话设计模式--中介者模式
    大话设计模式--职责链模式
    大话设计模式--命令模式
    大话设计模式--桥接模式
    迷宫求解
    stuct、class、typedef
    软件测试
    Scrapy初探
    python练习
    链表基础
  • 原文地址:https://www.cnblogs.com/water-full/p/4503584.html
Copyright © 2011-2022 走看看