zoukankan      html  css  js  c++  java
  • (floyd) hdu 4034

    Graph

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
    Total Submission(s): 2030    Accepted Submission(s): 1014


    Problem Description
    Everyone knows how to calculate the shortest path in a directed graph. In fact, the opposite problem is also easy. Given the length of shortest path between each pair of vertexes, can you find the original graph?
     
    Input
    The first line is the test case number T (T ≤ 100).
    First line of each case is an integer N (1 ≤ N ≤ 100), the number of vertexes.
    Following N lines each contains N integers. All these integers are less than 1000000.
    The jth integer of ith line is the shortest path from vertex i to j.
    The ith element of ith line is always 0. Other elements are all positive.
     
    Output
    For each case, you should output “Case k: ” first, where k indicates the case number and counts from one. Then one integer, the minimum possible edge number in original graph. Output “impossible” if such graph doesn't exist.

     
    Sample Input
    3 3 0 1 1 1 0 1 1 1 0 3 0 1 3 4 0 2 7 3 0 3 0 1 4 1 0 2 4 2 0
     
    Sample Output
    Case 1: 6 Case 2: 4 Case 3: impossible
     
    Source
     
     
    题意
     
    给出一个方阵,a[i][j]表示i到j的最短路
    求最少需要多少边的图符合这个方阵
     
    解析:
     
    直接floyd 啊
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<string>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<stack>
    #include<set>
    using namespace std;
    int n,mp[101][101];
    bool vis[101][101],flag;
    void floyd()
    {
        for(int k=1;k<=n;k++)
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(k==i||i==j||j==k)
                        continue;
                    if(mp[i][k]+mp[k][j]==mp[i][j])
                        vis[i][j]=0;
                    if(mp[i][k]+mp[k][j]<mp[i][j])
                    {
                        flag=false;
                        break;
                    }
                }
                if(!flag)
                    break;
            }
            if(!flag)
                break;
        }
    }
    int main()
    {
        int tt,cas=1;
        scanf("%d",&tt);
        while(tt--)
        {
            int ans=0;
            scanf("%d",&n);
            flag=true;
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                    scanf("%d",&mp[i][j]),vis[i][j]=1;
            }
            floyd();
            if(!flag)
            {
                printf("Case %d: impossible
    ",cas++);
                continue;
            }
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(mp[i][j]==0)
                        vis[i][j]=0;
                }
            }
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(vis[i][j])
                        ans++;
                }
            }
            printf("Case %d: %d
    ",cas++,ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    RxJava开发精要3-向响应式世界问好
    RxJava开发精要2-为什么是Observables?
    RxJava开发精要1-从.NET到RxJava
    为你的应用加速
    Android最佳性能实践(二)——分析内存的使用情况
    Android最佳性能实践(一)——合理管理内存
    Android 性能优化之使用MAT分析内存泄露问题
    给 Android 开发者的 RxJava 详解
    优化 Android 线程和后台任务开发
    资深谷歌安卓工程师对安卓应用开发的建议
  • 原文地址:https://www.cnblogs.com/water-full/p/4505338.html
Copyright © 2011-2022 走看看