zoukankan      html  css  js  c++  java
  • codeforces 263C

    C. Circle of Numbers
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    One day Vasya came up to the blackboard and wrote out n distinct integers from 1 to n in some order in a circle. Then he drew arcs to join the pairs of integers (a, b(a ≠ b), that are either each other's immediate neighbors in the circle, or there is number c, such that aand с are immediate neighbors, and b and c are immediate neighbors. As you can easily deduce, in the end Vasya drew n arcs.

    For example, if the numbers are written in the circle in the order 1, 2, 3, 4, 5 (in the clockwise direction), then the arcs will join pairs of integers (1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 3), (2, 4), (3, 5), (4, 1) and (5, 2).

    Much time has passed ever since, the numbers we wiped off the blackboard long ago, but recently Vasya has found a piece of paper with n written pairs of integers that were joined with the arcs on the board. Vasya asks you to find the order of numbers in the circle by these pairs.

    Input

    The first line of the input contains a single integer n (5 ≤ n ≤ 105) that shows, how many numbers were written on the board. Next nlines contain pairs of integers aibi (1 ≤ ai, bi ≤ nai ≠ bi) — the numbers that were connected by the arcs.

    It is guaranteed that no pair of integers, connected by a arc, occurs in the input more than once. The pairs of numbers and the numbers in the pairs are given in the arbitrary order.

    Output

    If Vasya made a mistake somewhere and there isn't any way to place numbers from 1 to n on the circle according to the statement, then print a single number "-1" (without the quotes). Otherwise, print any suitable sequence of n distinct integers from 1 to n.

    If there are multiple solutions, you are allowed to print any of them. Specifically, it doesn't matter which number you write first to describe the sequence of the order. It also doesn't matter whether you write out the numbers in the clockwise or counter-clockwise direction.

    Sample test(s)
    input
    5
    1 2
    2 3
    3 4
    4 5
    5 1
    1 3
    2 4
    3 5
    4 1
    5 2
    output
    1 2 3 4 5 
    input
    6
    5 6
    4 3
    5 3
    2 4
    6 1
    3 1
    6 2
    2 5
    1 4
    3 6
    1 2
    4 5
    output
    1 2 4 5 3 6 

    任意三点都能组成环,

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<cstdlib>
    #include<string>
    #include<vector>
    #include<stack>
    #include<set>
    #include<queue>
    #include<map>
    using namespace std;
    vector<int> e[200010],ans;
    map<int,bool> vis[200010];
    bool mark[200010];
    int n;
    int main()
    {
        scanf("%d",&n);
        for(int i=0;i<2*n;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            e[x].push_back(y);
            e[y].push_back(x);
            vis[x][y]=true;
            vis[y][x]=true;
        }
        for(int i=1;i<=n;i++)
            if (e[i].size()!=4)
            {
                printf("-1
    ");
                return 0;
            }
        int x=1,y=1;
        for(int i=0;i<n;i++)
        {
            bool flag=false;
            mark[x]=true;
            ans.push_back(x);
            for (int j=0;j<4;j++)
            {
                int num=0;
                int cur=e[x][j];
                for(int k=0;k<4;k++)
                    if (vis[x][e[cur][k]])
                        num++;
                if (num>1&&!mark[cur]&&vis[y][cur])
                {
                    y=x;
                    x=cur;
                    flag=true;
                    break;
                }
            }
            if (!flag&&i+1!=n)
            {
                printf("-1
    ");
                return 0;
            }
        }
        for(int i=0;i<n;i++)
            printf("%d ",ans[i]);
        printf("
    ");
        return 0;
    }
    

      

  • 相关阅读:
    等值首尾和2012年12月27日
    求质数2012年12月29日
    动态规划之最长公共子序列2012年12月22日,23日
    两数组最短距离2012年12月26日
    支配值数目2012年12月25日
    等值数目2012年12月26日
    最长平台问题(递归算法)2012年12月25日
    最长平台问题2012年12月24日
    筛法求质数2012年12月30日
    线性筛法2013年1月2日
  • 原文地址:https://www.cnblogs.com/water-full/p/4548121.html
Copyright © 2011-2022 走看看