zoukankan      html  css  js  c++  java
  • 09.编程理解无偏性与相合性

    编程理解无偏性与相合性

    无偏性

     1 from statistics import mean
     2 from statistics import variance
     3 import random
     4 import matplotlib.pyplot as plt
     5 
     6 
     7 def variance_bias(data):
     8     """方差"""
     9     n = len(data)
    10     if n <= 1:
    11         return None
    12 
    13     mean_value = mean(data)
    14     return sum((e - mean_value) ** 2 for e in data) / n
    15 
    16 
    17 def sample(num_of_samples, sample_sz, var):
    18     data = []
    19     for _ in range(num_of_samples):
    20         data.append(var([random.uniform(0.0, 1.0) for _ in range(sample_sz)]))
    21     return data
    22 
    23 
    24 if __name__ == "__main__":
    25 
    26     data1 = sample(1000, 40, variance_bias)
    27     plt.hist(data1, bins="auto", rwidth=0.8)
    28     plt.axvline(x=mean(data1), c='black')
    29     plt.axvline(x=1/12, c='red')
    30     print("bias :", mean(data1), 1/12)
    31     plt.show()
    32 
    33     data2 = sample(1000, 40, variance)
    34     plt.hist(data2, bins="auto", rwidth=0.8)
    35     plt.axvline(x=mean(data2), c='black')
    36     plt.axvline(x=1/12, c='red')
    37     print("unbias :", mean(data2), 1/12)
    38     plt.show()

     

     相合性

    import random
    from statistics import mean, variance
    import matplotlib.pyplot as plt
    
    if __name__ == "__main__":
    
        sample_means = []
        sample_vars = []
        indices = []
    
        for sz in range(20, 10001, 50):
            indices.append(sz)
            sample = [random.gauss(0.0, 1.0) for _ in range(sz)]
            sample_means.append(mean(sample))
            sample_vars.append(variance(sample))
    
        plt.plot(indices, sample_means)
        plt.plot(indices, sample_vars)
        plt.show()

  • 相关阅读:
    OAF 开发,给组件添加javascript事件
    SQL SERVER占用CPU过高优化
    Winform嵌入CEF(非正常用法)
    多线程——i++的坑
    20150819(i++与++i的思考)
    listView中,checkBox的显示和隐藏
    装箱和拆箱
    虚方法
    [转]关于struct的一些解释与class对比
    提取行政区边界经纬度坐标(高德+百度)
  • 原文地址:https://www.cnblogs.com/waterr/p/14141600.html
Copyright © 2011-2022 走看看