zoukankan      html  css  js  c++  java
  • python之线程、进程入门

    进程、线程怎么区分? 最简洁直白的话,多线程一般用于相当于几个人干一件事,多进程相当于几个人分别一件事干一遍。

    1、线程

    1.1  简单线程

      

    import threading
    def fo():
        print("hello")
    def f1(a1, a2):
        fo()
    t = threading.Thread(target=f1, args=(123, 11))      #创建一个子线程
    t.start()
    t = threading.Thread(target=f1, args=(123, 11))      #再创建一个子线程
    t.start()
    

    1.2  主线程等待子线程

    import threading
    import time
    def fo():
        print("hello")
    def f1(a1, a2):
        time.sleep(5)
        fo()
    t = threading.Thread(target=f1, args=(123, 11))      #创建一个子线程
    t.setDaemon(False)                             #主线程是否等待子线程 ,True为不等待,False为等待;
    t.start()
    t = threading.Thread(target=f1, args=(123, 11))
    t.setDaemon(True)
    t.start()
    
    输出结果为:
    》》》 hello
    
    只有一个结果,是因为第二个子线程没有执行完成,主线程已经执行完了
    

     1.3  主线程等待,子线程执行

        join(1) #最多等待1s

       

    import time
    def fo():
        print("hello")
    def f1(a1, a2):
        time.sleep(5)
        fo()
    t = threading.Thread(target=f1, args=(123, 11))
    t.start()
    t.join()
    t = threading.Thread(target=f1, args=(123, 11))
    t.start()
    
    j结果输出:
    hello
    hello
    
    
    第一个hello出来之后,5s后第二个hello才出来,是因为当运行到t.join()时,等待第一子线程运行完,主线程才执行下一步
    

     1.4 防止脏数据,线程锁

      

    import threading, time
    globals_num = 0
    lock = threading.RLock()
    def func():
        lock.acquire()                    #锁住线程
        global globals_num
        globals_num +=1                    #过程中只有当一个线程执行完毕,下一个线程开始执行
        time.sleep(1)
        print(globals_num)
        lock.release()                    #解锁线程
    for i in range(10):
        t = threading.Thread(target = func)       #创建十个线程
        t.start()
    

    1.5  event ,相当于集合点(可以想象红绿灯)

      

    import threading
    def do(event):
        print("start")
        event.wait()     #默认false,线程等待 。。红灯
        print("end")
    event_obj = threading.Event()
    for i in range(3):
        t = threading.Thread(target=do, args=(event_obj,))
        t.start()
    #event_obj.clear()       #false    改状态 红灯
    inp = input(">>>>")
    if inp == 'true' :
        event_obj.set()     #True      改状态绿灯
    

    2、队列   (使用场景,排队, 12306, 游戏)

      import queue

      get 等

      get_nowait ,不等

     3、进程

      3.1简单进程

    import time
    def f1(a1):
        print(a1)
    if __name__ == '__main__':
        t = multiprocessing.Process(target=f1, args=(11,))
        t.start()
        t2 = multiprocessing.Process(target=f1, args=(12,))
        t2.start()
    
    结果:
    11
    12
    

     3.2 进程之间不共享数据

    from multiprocessing import Process
    li = []
    def foo(i):
        li.append(i)
        print(li)
    if __name__ == '__main__':
        for i in range(5):
            p = Process(target=foo, args=(i,))
            p.start()
    
    结果:
    [1]
    [3]
    [0]
    [2]
    [4]
    

     3.3 进程数据共享

    from multiprocessing import Process,Manager
    def foo(i, dic):
        dic[i] = 100 + i                #第一个进程的dict={0;100},第二个进程在第一个的基础上增加dict[0] = 101
        for k, v in dic.items():
            print(k, v)
    if __name__ == '__main__':
        manager = Manager()
        dic = manager.dict()       #数据共享一般采用此类方法
        for i in range(2):
            p = Process(target=foo, args=(i, dic,))
            p.start()
            p.join()

    结果:
    0 100
    0 100
    1 101

     5、进程池 pool

        pool.apply        每一个任务都是排队进行,进程join()

     pool.apply_async    每一个任务都是并发进行,可设置回调函数,无join(),进程daemon为True

      

    from multiprocessing import Pool
    import time
    def f1(a):
        time.sleep(3)
        print(a)
        return 100
    def f2(arg):
        print(arg)
    if __name__ == '__main__':
        pool = Pool(5)    #进程池最大进程数
        for i in range(10):
            pool.apply_async(func=f1, args=(i,), callback=f2)
        pool.close()
        pool.join()
    
    结果就不贴了,可以看到是5个进程输出,再5个进程输出
    
    from multiprocessing import Pool
    import time
    def f1(a):
        time.sleep(3)
        print(a)
    if __name__ == '__main__':
        pool = Pool(5)    #进程池最大进程数
        for i in range(10):
            pool.apply(func=f1, args=(i,))
        pool.close()
        pool.join()
    
    
    每间隔3s输出一个结果
    

     6、线程池

    6.1简易线程池

    import threading
    import queue
    import time
    
    class ThreadPool:
        def __init__(self, max_num =20):
            self.queue = queue.Queue(max_num)
            for i in range(max_num):
                self.queue.put(threading.Thread)
    
        def get_thread(self):
            return self.queue.get()
    
        def add_thread(self):
            self.queue.put(threading.Thread)
    
    def func(pool, args):
        time.sleep(2)
        pool.add_thread()
        print(args)
    p = ThreadPool(10)
    for i in range(100):
        thread = p.get_thread()
        r = thread(target=func, args=(p, i))
        r.start()
    

    6.2 实际线程池

      

    import queue
    import threading
    import contextlib
    import time
    
    StopEvent = object()
    class ThreadPool(object):
    
        def __init__(self, max_num, max_task_num = None):
            if max_task_num:
                self.q = queue.Queue(max_task_num)
            else:
                self.q = queue.Queue()
            self.max_num = max_num       #最大线程数
            self.cancel = False
            self.terminal = False
            self.generate_list = []      #实际使用的线程
            self.free_list = []          #空闲线程
    
        def run(self, func, args, callback=None):
            """
            线程池执行一个任务
            :param func: 任务函数
            :param args: 任务函数所需参数
            :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
            :return: 如果线程池已经终止,则返回True否则None
            """
            if self.cancel:
                return
            if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
                self.generate_thread()
            w = (func, args, callback,)
            self.q.put(w)
    
        def generate_thread(self):
            """
            创建一个线程
            """
            t = threading.Thread(target=self.call)
            t.start()
    
        def call(self):
            """
            循环去获取任务函数并执行任务函数
            """
            current_thread = threading.currentThread()
            self.generate_list.append(current_thread)
    
            event = self.q.get()
            while event != StopEvent:
    
                func, arguments, callback = event
                try:
                    result = func(*arguments)
                    success = True
                except Exception as e:
                    success = False
                    result = None
    
                if callback is not None:
                    try:
                        callback(success, result)
                    except Exception as e:
                        pass
    
                with self.worker_state(self. free_list, current_thread):
                    if self.terminal:
                        event = StopEvent
                    else:
                        event = self.q.get()
            else:
    
                self.generate_list.remove(current_thread)
    
        def close(self):
            """
            执行完所有的任务后,所有线程停止
            """
            self.cancel = True
            full_size = len(self.generate_list)
            while full_size:
                self.q.put(StopEvent)
                full_size -= 1
    
        def terminate(self):
            """
            无论是否还有任务,终止线程
            """
            self.terminal = True
            while self.generate_list:
                self.q.put(StopEvent)
            self.q.queue.clear()
    
        @contextlib.contextmanager
        def worker_state(self, state_list, worker_thread):
            """
            用于记录线程中正在等待的线程数
            """
            state_list.append(worker_thread)
            try:
                yield
            finally:
                state_list.remove(worker_thread)
    
    
    
    # How to use
    
    
    pool = ThreadPool(5)
    
    def callback(status, result):           #回调函数
        # status, execute action status
        # result, execute action return value
        pass
    
    def action(i):
        time.sleep(5)
        print(i)
    
    for i in range(30):
        ret = pool.run(action, (i,), callback)
    
    time.sleep(5)
    print(len(pool.generate_list), len(pool.free_list))
    
    pool.close()
    #pool.terminate()
    
  • 相关阅读:
    linux 静态库和动态库(共享库)的制作与使用(注意覆盖问题)转
    手机号码格式正则表达式
    项目去除TFS关联、迁移重部署
    Excel中VLOOKUP函数的用法和注意点
    自定义打赏插件
    分享一个无需注册,无次数限制的Smile聊天机器人接口
    TCP/IP
    Java字典树
    平衡二叉树结构 AVL
    二叉搜索树(二叉排序树)BST
  • 原文地址:https://www.cnblogs.com/waylon/p/6642911.html
Copyright © 2011-2022 走看看