zoukankan      html  css  js  c++  java
  • OpenCV 图像特效

    1、RGB ->灰度

    #灰度   方式1
    img=cv2.imread('b.png',0)
    img1=cv2.imread('b.png',1)
    height=img1.shape[0]
    width=img1.shape[1]
    print(img1.shape)
    # cv2.imshow('rgb',img1)
    # cv2.imshow('gray',img)
    # cv2.waitKey(0)
    #灰度  方式2
    # dst=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)#颜色空间转换
    # cv2.imshow('gray1',dst)
    # cv2.waitKey(0)
    import numpy as np
    #灰度  方式3
    #RGB  R=G=B=GRAY
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         gray=(int(b)+int(g)+int(r))/3
    #         dst[i,j]=np.uint8(gray)
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    
    #灰度  方式4
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         gray=int(b)*0.114+int(g)*0.587+int(r)*0.299
    #         dst[i,j]=np.uint8(gray)
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    
    #算法优化
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         b=int(b)
    #         g=int(g)
    #         r=int(r)
    #         # gray=(b*1+g*2+r*1)/4#1+2+1=4  加的值越大越精确
    #         gray=(b*300+g*200+r*500)/1000
    #         dst[i,j]=gray
    # 
    # cv2.imshow('优化',dst)
    # cv2.waitKey(0)

    2、颜色反转,底板效果

    # # 灰度图片  255-px
    # gray=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
    # dst=np.zeros((height,width,1),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         dstpx=255-gray[i,j]
    #         dst[i,j]=dstpx
    # 
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    # **************************
    # RGB颜色反转
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         dst[i,j]=[255-b,255-g,255-r]
    #
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)

    3、马赛克

    # 马赛克
    # dst=np.zeros((height,width,3),np.uint8)
    # dst=img1
    # for i in range(100,150):
    #     for j in range(50,150):
    #         if i%10==0 and j%10==0:
    #             for n in range(10):
    #                 for m in range(10):
    #                     print(img1[i,j])
    #                     # (b,g,r)=img1[i,j]
    #                     # dst[i+n,j+m]=(b,g,r)
    #                     dst[i+n,j+m]=img1[i,j]
    # cv2.imshow('masaike',dst)
    # cv2.waitKey(0)

    4、毛玻璃

    # dst=np.zeros(img1.shape,np.uint8)
    # 随机数范围mm
    # mm=8
    #
    # for i in range(height):
    #     for j in range(width):
    #         index=int(random.random()*8)
    #         if i+8 < height and j+8 < 
    #             dst[i,j]=img1[i+index,j+index]
    #         else:
    #             dst[i,j] = img1[i-index, j-index]
    #
    # cv2.imshow('maoboli',dst)
    # cv2.waitKey(0)

    5、图片融合

    img=cv2.imread('a.jpg',1)
    img=cv2.resize(img,(256,256))
    
    roiH=int(height)
    roiW=int(width)
    # imgROI融合区域大小,两张图片一样大小
    imgROI=img[0:roiH,0:roiW]
    img1ROI=img1[0:roiH,0:roiW]
    dst=np.zeros(img.shape,np.uint8)
    
    dst=cv2.addWeighted(imgROI,0.6,img1ROI,0.4,0)
    
    cv2.imshow('ss',dst)
    cv2.waitKey(0)

    6、边缘检测

    img=cv2.imread('a.jpg',1)
    
    #1 gray  2 高斯滤波 3 canny
    
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # 高斯滤波   去除干扰像素
    imgG=cv2.GaussianBlur(gray,(3,3),0)
    # 图像卷积
    dst1=cv2.Canny(img,50,50)
    dst2=cv2.Canny(imgG,50,50)
    cv2.imshow('dst2_meiyoulvbo',dst1)
    cv2.imshow('lvbo',dst2)
    cv2.waitKey(0)

    7、浮雕效果

    img=cv2.imread('b.png',1)
    cv2.imshow('src',img)
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst=np.zeros((height,width,1),np.uint8)
    for i in range(height):
        for j in range(width-1):
            dst[i,j]=gray[i,j]-gray[i,j+1]+150
            if dst[i,j]>255:
                dst[i,j]=255
            if dst[i,j]<0:
                dst[i, j]=0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)

     8、对比度

    import cv2 as cv
    img = cv.imread('3.jpg')
    cv.imshow('src', img)
    gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    cv.imshow('gray', gray)
    # 对比度
    clahe = cv.createCLAHE(clipLimit=5, tileGridSize=(8, 8))
    dst = clahe.apply(gray)
    cv.imshow('dst', dst)
    cv.waitKey(0)

    效果:

  • 相关阅读:
    java后台保存JSON
    查询树节点及其所有上级节点sql语句
    查询树节点及其所有下级节点sql语句
    Hibernate查询机制使用原生sql语法查询
    SSH框架通过poi导出excel表格
    java通过poi导入excel数据
    各类型日期date的相互转化
    推荐一下我喜欢的软件
    青岛市赛总结——远征石油大学
    My learn of git
  • 原文地址:https://www.cnblogs.com/wbdream/p/10287367.html
Copyright © 2011-2022 走看看