zoukankan      html  css  js  c++  java
  • OpenCV 图像特效

    1、RGB ->灰度

    #灰度   方式1
    img=cv2.imread('b.png',0)
    img1=cv2.imread('b.png',1)
    height=img1.shape[0]
    width=img1.shape[1]
    print(img1.shape)
    # cv2.imshow('rgb',img1)
    # cv2.imshow('gray',img)
    # cv2.waitKey(0)
    #灰度  方式2
    # dst=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)#颜色空间转换
    # cv2.imshow('gray1',dst)
    # cv2.waitKey(0)
    import numpy as np
    #灰度  方式3
    #RGB  R=G=B=GRAY
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         gray=(int(b)+int(g)+int(r))/3
    #         dst[i,j]=np.uint8(gray)
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    
    #灰度  方式4
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         gray=int(b)*0.114+int(g)*0.587+int(r)*0.299
    #         dst[i,j]=np.uint8(gray)
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    
    #算法优化
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         b=int(b)
    #         g=int(g)
    #         r=int(r)
    #         # gray=(b*1+g*2+r*1)/4#1+2+1=4  加的值越大越精确
    #         gray=(b*300+g*200+r*500)/1000
    #         dst[i,j]=gray
    # 
    # cv2.imshow('优化',dst)
    # cv2.waitKey(0)

    2、颜色反转,底板效果

    # # 灰度图片  255-px
    # gray=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
    # dst=np.zeros((height,width,1),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         dstpx=255-gray[i,j]
    #         dst[i,j]=dstpx
    # 
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)
    # **************************
    # RGB颜色反转
    # dst=np.zeros((height,width,3),np.uint8)
    # for i in range(height):
    #     for j in range(width):
    #         (b,g,r)=img1[i,j]
    #         dst[i,j]=[255-b,255-g,255-r]
    #
    # cv2.imshow('dst',dst)
    # cv2.waitKey(0)

    3、马赛克

    # 马赛克
    # dst=np.zeros((height,width,3),np.uint8)
    # dst=img1
    # for i in range(100,150):
    #     for j in range(50,150):
    #         if i%10==0 and j%10==0:
    #             for n in range(10):
    #                 for m in range(10):
    #                     print(img1[i,j])
    #                     # (b,g,r)=img1[i,j]
    #                     # dst[i+n,j+m]=(b,g,r)
    #                     dst[i+n,j+m]=img1[i,j]
    # cv2.imshow('masaike',dst)
    # cv2.waitKey(0)

    4、毛玻璃

    # dst=np.zeros(img1.shape,np.uint8)
    # 随机数范围mm
    # mm=8
    #
    # for i in range(height):
    #     for j in range(width):
    #         index=int(random.random()*8)
    #         if i+8 < height and j+8 < 
    #             dst[i,j]=img1[i+index,j+index]
    #         else:
    #             dst[i,j] = img1[i-index, j-index]
    #
    # cv2.imshow('maoboli',dst)
    # cv2.waitKey(0)

    5、图片融合

    img=cv2.imread('a.jpg',1)
    img=cv2.resize(img,(256,256))
    
    roiH=int(height)
    roiW=int(width)
    # imgROI融合区域大小,两张图片一样大小
    imgROI=img[0:roiH,0:roiW]
    img1ROI=img1[0:roiH,0:roiW]
    dst=np.zeros(img.shape,np.uint8)
    
    dst=cv2.addWeighted(imgROI,0.6,img1ROI,0.4,0)
    
    cv2.imshow('ss',dst)
    cv2.waitKey(0)

    6、边缘检测

    img=cv2.imread('a.jpg',1)
    
    #1 gray  2 高斯滤波 3 canny
    
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # 高斯滤波   去除干扰像素
    imgG=cv2.GaussianBlur(gray,(3,3),0)
    # 图像卷积
    dst1=cv2.Canny(img,50,50)
    dst2=cv2.Canny(imgG,50,50)
    cv2.imshow('dst2_meiyoulvbo',dst1)
    cv2.imshow('lvbo',dst2)
    cv2.waitKey(0)

    7、浮雕效果

    img=cv2.imread('b.png',1)
    cv2.imshow('src',img)
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst=np.zeros((height,width,1),np.uint8)
    for i in range(height):
        for j in range(width-1):
            dst[i,j]=gray[i,j]-gray[i,j+1]+150
            if dst[i,j]>255:
                dst[i,j]=255
            if dst[i,j]<0:
                dst[i, j]=0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)

     8、对比度

    import cv2 as cv
    img = cv.imread('3.jpg')
    cv.imshow('src', img)
    gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    cv.imshow('gray', gray)
    # 对比度
    clahe = cv.createCLAHE(clipLimit=5, tileGridSize=(8, 8))
    dst = clahe.apply(gray)
    cv.imshow('dst', dst)
    cv.waitKey(0)

    效果:

  • 相关阅读:
    UVA 1025 A Spy in the Metro DP水题
    ZOJ 3814 Sawtooth Puzzle BFS
    ZOJ 3816 Generalized Palindromic Number
    UVA 10859 Placing Lampposts 树形DP
    UVA 11825 Hackers' Crackdown 状压DP
    POJ 2887 Big String 线段树 离线处理
    POJ 1635 Subway tree systems Hash法判断有根树是否同构
    BZOJ 3110 k大数查询 & 树套树
    sdoi 2009 & 状态压缩
    来自于2016.2.24的flag
  • 原文地址:https://www.cnblogs.com/wbdream/p/10287367.html
Copyright © 2011-2022 走看看