zoukankan      html  css  js  c++  java
  • 机器学习中常见的专业术语

    模型(model):计算机层面的认知
    学习算法(learning algorithm),从数据中产生模型的方法
    数据集(data set):一组记录的合集
    示例(instance):对于某个对象的描述
    样本(sample):也叫示例
    属性(attribute):对象的某方面表现或特征
    特征(feature):同属性
    属性值(attribute value):属性上的取值
    属性空间(attribute space):属性张成的空间
    样本空间/输入空间(samplespace):同属性空间
    特征向量(feature vector):在属性空间里每个点对应一个坐标向量,把一个示例称作特征向量
    维数(dimensionality):描述样本参数的个数(也就是空间是几维的)
    学习(learning)/训练(training):从数据中学得模型
    训练数据(training data):训练过程中用到的数据
    训练样本(training sample):训练用到的每个样本
    训练集(training set):训练样本组成的集合
    假设(hypothesis):学习模型对应了关于数据的某种潜在规则
    真相(ground-truth):真正存在的潜在规律
    学习器(learner):模型的另一种叫法,把学习算法在给定数据和参数空间的实例化
    预测(prediction):判断一个东西的属性
    标记(label):关于示例的结果信息,比如我是一个“好人”。
    样例(example):拥有标记的示例
    标记空间/输出空间(label space):所有标记的集合
    分类(classification):预测是离散值,比如把人分为好人和坏人之类的学习任务
    回归(regression):预测值是连续值,比如你的好人程度达到了0.9,0.6之类的
    二分类(binary classification):只涉及两个类别的分类任务
    正类(positive class):二分类里的一个
    反类(negative class):二分类里的另外一个
    多分类(multi-class classification):涉及多个类别的分类
    测试(testing):学习到模型之后对样本进行预测的过程
    测试样本(testing sample):被预测的样本
    聚类(clustering):把训练集中的对象分为若干组
    簇(cluster):每一个组叫簇
    监督学习(supervised learning):典范--分类和回归
    无监督学习(unsupervised learning):典范--聚类
    未见示例(unseen instance):“新样本“,没训练过的样本
    泛化(generalization)能力:学得的模型适用于新样本的能力
    分布(distribution):样本空间的全体样本服从的一种规律
    独立同分布(independent and identically distributed,简称i,i,d.):获得的每个样本都是独立地从这个分布上采样获得的。

  • 相关阅读:
    代码生成器所用到的东西
    被float.parse吃掉的0.03...
    Microsoft Visual Studio 2010 Ultimate ISO 官方下载地址
    关于.net实现网站模板机制(非标签替换)
    关于ACCESS的事务与存储过程的调用
    关于如何实现左中右三栏布局, 左右固定宽度,中间随屏幕自适应
    几个台湾优秀个人博客网站
    [转]MathType常见问题
    Qt中int转换成QString
    fatal error C1189: #error : The C++ Standard Library forbids macroizing keywords. Enable warning C4005 to find the forbidden macro.
  • 原文地址:https://www.cnblogs.com/wbyixx/p/12079554.html
Copyright © 2011-2022 走看看