zoukankan      html  css  js  c++  java
  • 梯度下降求解逻辑回归

    用到的文件:
    链接:https://pan.baidu.com/s/1V3gtif8jTFU62VvUBYhZfQ
    提取码:mtph

    Logistic Regression

    The data

    我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。

    #三大件
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    import os
    path = 'data' + os.sep + 'LogiReg_data.txt'
    pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
    pdData.head()
    
    Exam 1 Exam 2 Admitted
    0 34.623660 78.024693 0
    1 30.286711 43.894998 0
    2 35.847409 72.902198 0
    3 60.182599 86.308552 1
    4 79.032736 75.344376 1
    pdData.shape
    
    (100, 3)
    
    positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples
    negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples
    
    fig, ax = plt.subplots(figsize=(10,5))
    ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
    ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
    ax.legend()
    ax.set_xlabel('Exam 1 Score')
    ax.set_ylabel('Exam 2 Score')
    
    Text(0, 0.5, 'Exam 2 Score')
    

    png

    The logistic regression

    目标:建立分类器(求解出三个参数 $ heta_0 heta_1 heta_2 $)

    设定阈值,根据阈值判断录取结果

    要完成的模块

    • sigmoid : 映射到概率的函数

    • model : 返回预测结果值

    • cost : 根据参数计算损失

    • gradient : 计算每个参数的梯度方向

    • descent : 进行参数更新

    • accuracy: 计算精度

    sigmoid 函数

    [g(z) = frac{1}{1+e^{-z}} ]

    def sigmoid(z):
        return 1 / (1 + np.exp(-z))
    
    nums = np.arange(-10, 10, step=1) #creates a vector containing 20 equally spaced values from -10 to 10
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(nums, sigmoid(nums), 'r')
    
    [<matplotlib.lines.Line2D at 0x19dbf1cd948>]
    

    png

    Sigmoid

    • (g:mathbb{R} o [0,1])
    • (g(0)=0.5)
    • (g(- infty)=0)
    • (g(+ infty)=1)
    def model(X, theta):
        
        return sigmoid(np.dot(X, theta.T))
    

    [egin{array}{ccc} egin{pmatrix} heta_{0} & heta_{1} & heta_{2}end{pmatrix} & imes & egin{pmatrix}1\ x_{1}\ x_{2} end{pmatrix}end{array}= heta_{0}+ heta_{1}x_{1}+ heta_{2}x_{2} ]

    
    pdData.insert(0, 'Ones', 1) # in a try / except structure so as not to return an error if the block si executed several times
    
    
    # set X (training data) and y (target variable)
    orig_data = pdData.as_matrix() # convert the Pandas representation of the data to an array useful for further computations
    cols = orig_data.shape[1]
    X = orig_data[:,0:cols-1]
    y = orig_data[:,cols-1:cols]
    
    # convert to numpy arrays and initalize the parameter array theta
    #X = np.matrix(X.values)
    #y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values)
    theta = np.zeros([1, 3])
    
    d:pythonpy376libsite-packagesipykernel_launcher.py:5: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.
      """
    
    X[:5]
    
    array([[ 1.        , 34.62365962, 78.02469282],
           [ 1.        , 30.28671077, 43.89499752],
           [ 1.        , 35.84740877, 72.90219803],
           [ 1.        , 60.18259939, 86.3085521 ],
           [ 1.        , 79.03273605, 75.34437644]])
    
    y[:5]
    
    array([[0.],
           [0.],
           [0.],
           [1.],
           [1.]])
    
    theta
    
    array([[0., 0., 0.]])
    
    X.shape, y.shape, theta.shape
    
    ((100, 3), (100, 1), (1, 3))
    

    损失函数

    将对数似然函数去负号

    [D(h_ heta(x), y) = -ylog(h_ heta(x)) - (1-y)log(1-h_ heta(x)) ]

    求平均损失

    [J( heta)=frac{1}{n}sum_{i=1}^{n} D(h_ heta(x_i), y_i) ]

    def cost(X, y, theta):
        left = np.multiply(-y, np.log(model(X, theta)))
        right = np.multiply(1 - y, np.log(1 - model(X, theta)))
        return np.sum(left - right) / (len(X))
    
    cost(X, y, theta)
    
    0.6931471805599453
    

    计算梯度

    [frac{partial J}{partial heta_j}=-frac{1}{m}sum_{i=1}^n (y_i - h_ heta (x_i))x_{ij} ]

    def gradient(X, y, theta):
        grad = np.zeros(theta.shape)
        error = (model(X, theta)- y).ravel()
        for j in range(len(theta.ravel())): #for each parmeter
            term = np.multiply(error, X[:,j])
            grad[0, j] = np.sum(term) / len(X)
        
        return grad
    

    Gradient descent

    比较3中不同梯度下降方法

    STOP_ITER = 0
    STOP_COST = 1
    STOP_GRAD = 2
    
    def stopCriterion(type, value, threshold):
        #设定三种不同的停止策略
        if type == STOP_ITER:        return value > threshold
        elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold
        elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold
    
    import numpy.random
    #洗牌
    def shuffleData(data):
        np.random.shuffle(data)
        cols = data.shape[1]
        X = data[:, 0:cols-1]
        y = data[:, cols-1:]
        return X, y
    
    import time
    
    def descent(data, theta, batchSize, stopType, thresh, alpha):
        #梯度下降求解
        
        init_time = time.time()
        i = 0 # 迭代次数
        k = 0 # batch
        X, y = shuffleData(data)
        grad = np.zeros(theta.shape) # 计算的梯度
        costs = [cost(X, y, theta)] # 损失值
    
        
        while True:
            grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
            k += batchSize #取batch数量个数据
            if k >= n: 
                k = 0 
                X, y = shuffleData(data) #重新洗牌
            theta = theta - alpha*grad # 参数更新
            costs.append(cost(X, y, theta)) # 计算新的损失
            i += 1 
    
            if stopType == STOP_ITER:       value = i
            elif stopType == STOP_COST:     value = costs
            elif stopType == STOP_GRAD:     value = grad
            if stopCriterion(stopType, value, thresh): break
        
        return theta, i-1, costs, grad, time.time() - init_time
    
    def runExpe(data, theta, batchSize, stopType, thresh, alpha):
        #import pdb; pdb.set_trace();
        theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
        name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
        name += " data - learning rate: {} - ".format(alpha)
        if batchSize==n: strDescType = "Gradient"
        elif batchSize==1:  strDescType = "Stochastic"
        else: strDescType = "Mini-batch ({})".format(batchSize)
        name += strDescType + " descent - Stop: "
        if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
        elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
        else: strStop = "gradient norm < {}".format(thresh)
        name += strStop
        print ("***{}
    Theta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
            name, theta, iter, costs[-1], dur))
        fig, ax = plt.subplots(figsize=(12,4))
        ax.plot(np.arange(len(costs)), costs, 'r')
        ax.set_xlabel('Iterations')
        ax.set_ylabel('Cost')
        ax.set_title(name.upper() + ' - Error vs. Iteration')
        return theta
    

    不同的停止策略

    设定迭代次数

    #选择的梯度下降方法是基于所有样本的
    n=100
    runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
    
    ***Original data - learning rate: 1e-06 - Gradient descent - Stop: 5000 iterations
    Theta: [[-0.00027127  0.00705232  0.00376711]] - Iter: 5000 - Last cost: 0.63 - Duration: 1.47s
    
    
    
    
    
    array([[-0.00027127,  0.00705232,  0.00376711]])
    

    png

    根据损失值停止

    设定阈值 1E-6, 差不多需要110 000次迭代

    runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
    
    ***Original data - learning rate: 0.001 - Gradient descent - Stop: costs change < 1e-06
    Theta: [[-5.13364014  0.04771429  0.04072397]] - Iter: 109901 - Last cost: 0.38 - Duration: 32.65s
    
    
    
    
    
    array([[-5.13364014,  0.04771429,  0.04072397]])
    

    png

    根据梯度变化停止

    设定阈值 0.05,差不多需要40 000次迭代

    runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
    
    ***Original data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.05
    Theta: [[-2.37033409  0.02721692  0.01899456]] - Iter: 40045 - Last cost: 0.49 - Duration: 12.20s
    
    
    
    
    
    array([[-2.37033409,  0.02721692,  0.01899456]])
    

    png

    对比不同的梯度下降方法

    Stochastic descent

    runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
    
    ***Original data - learning rate: 0.001 - Stochastic descent - Stop: 5000 iterations
    Theta: [[-0.36656341 -0.01406809 -0.01956622]] - Iter: 5000 - Last cost: 1.80 - Duration: 0.45s
    
    
    
    
    
    array([[-0.36656341, -0.01406809, -0.01956622]])
    

    png

    有点爆炸。。。很不稳定,再来试试把学习率调小一些

    runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
    
    ***Original data - learning rate: 2e-06 - Stochastic descent - Stop: 15000 iterations
    Theta: [[-0.00202316  0.00991808  0.00087764]] - Iter: 15000 - Last cost: 0.63 - Duration: 1.38s
    
    
    
    
    
    array([[-0.00202316,  0.00991808,  0.00087764]])
    

    png

    速度快,但稳定性差,需要很小的学习率

    Mini-batch descent

    runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
    
    ***Original data - learning rate: 0.001 - Mini-batch (16) descent - Stop: 15000 iterations
    Theta: [[-1.03398289  0.04372859  0.02318741]] - Iter: 15000 - Last cost: 1.05 - Duration: 1.83s
    
    
    
    
    
    array([[-1.03398289,  0.04372859,  0.02318741]])
    

    png

    浮动仍然比较大,我们来尝试下对数据进行标准化
    将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1

    from sklearn import preprocessing as pp
    
    scaled_data = orig_data.copy()
    scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
    
    runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
    
    ***Scaled data - learning rate: 0.001 - Gradient descent - Stop: 5000 iterations
    Theta: [[0.3080807  0.86494967 0.77367651]] - Iter: 5000 - Last cost: 0.38 - Duration: 1.56s
    
    
    
    
    
    array([[0.3080807 , 0.86494967, 0.77367651]])
    

    png

    它好多了!原始数据,只能达到达到0.61,而我们得到了0.38个在这里!
    所以对数据做预处理是非常重要的

    runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
    
    ***Scaled data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.02
    Theta: [[1.0707921  2.63030842 2.41079787]] - Iter: 59422 - Last cost: 0.22 - Duration: 19.58s
    
    
    
    
    
    array([[1.0707921 , 2.63030842, 2.41079787]])
    

    png

    更多的迭代次数会使得损失下降的更多!

    theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)
    
    ***Scaled data - learning rate: 0.001 - Stochastic descent - Stop: gradient norm < 0.0004
    Theta: [[1.14964649 2.79191694 2.56889202]] - Iter: 72692 - Last cost: 0.22 - Duration: 8.55s
    

    png

    随机梯度下降更快,但是我们需要迭代的次数也需要更多,所以还是用batch的比较合适!!!

    runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002*2, alpha=0.001)
    
    ***Scaled data - learning rate: 0.001 - Mini-batch (16) descent - Stop: gradient norm < 0.004
    Theta: [[1.15785505 2.80909166 2.5880511 ]] - Iter: 1700 - Last cost: 0.22 - Duration: 0.36s
    
    
    
    
    
    array([[1.15785505, 2.80909166, 2.5880511 ]])
    

    png

    精度

    #设定阈值
    def predict(X, theta):
        return [1 if x >= 0.5 else 0 for x in model(X, theta)]
    
    scaled_X = scaled_data[:, :3]
    y = scaled_data[:, 3]
    predictions = predict(scaled_X, theta)
    correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
    accuracy = (sum(map(int, correct)) % len(correct))
    print ('accuracy = {0}%'.format(accuracy))
    
    accuracy = 89%
  • 相关阅读:
    观察者模式
    strchr
    行转列
    Ja.Net:融合 Java 1.5 和 .NET !
    主题:借JavaFX之风,Swing终于熬到了出头之日
    DOM和SAX概念的总结
    几个linux的命令技巧
    gcc编译的东东
    详细介绍DOM和SAX
    oracle的number类型默认长度是多少?
  • 原文地址:https://www.cnblogs.com/wbyixx/p/12199453.html
Copyright © 2011-2022 走看看