zoukankan      html  css  js  c++  java
  • poj 2246 (zoj 1094)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094

    ZOJ Problem Set - 1094
    
    
    Matrix Chain Multiplication
    
    --------------------------------------------------------------------------------
    
    Time Limit:  2 Seconds      Memory Limit:  65536 KB 
    
    --------------------------------------------------------------------------------
    
    Matrix multiplication problem is a typical example of dynamical programming. 
    
    Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
     For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
     There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
     The first one takes 15000 elementary multiplications, but the second one only 3500. 
    
    Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy. 
    
    Input Specification
    Input consists of two parts: a list of matrices and a list of expressions.
     The first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix. 
     The second part of the input file strictly adheres to the following syntax (given in EBNF): 
    
    SecondPart = Line { Line } <EOF>
    Line       = Expression <CR>
    Expression = Matrix | "(" Expression Expression ")"
    Matrix     = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
    
    
    
    
    Output Specification
    For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses. 
    Sample Input
    9
    A 50 10
    B 10 20
    C 20 5
    D 30 35
    E 35 15
    F 15 5
    G 5 10
    H 10 20
    I 20 25
    A
    B
    C
    (AA)
    (AB)
    (AC)
    (A(BC))
    ((AB)C)
    (((((DE)F)G)H)I)
    (D(E(F(G(HI)))))
    ((D(EF))((GH)I))
    
    
    Sample Output
    0
    0
    0
    error
    10000
    error
    3500
    15000
    40500
    47500
    15125
    






    #include <iostream>
    #include <algorithm>
    #include <stdio.h>
    #include <string.h>
    #include <cmath>
    #include <stack>
    using namespace std;
    struct node
    {
        int m,n;
      //  bool f;
    };
    node hash[200];
    char s[1000];
    int main()
    {
        int i,n,sum;
        char c;
        bool b;
        scanf("%d",&n);
        while(n--)
        {
           getchar();
           scanf("%c",&c);
           scanf("%d%d",&hash[c].m,&hash[c].n);
        }
         node temp,temp1;
        while(scanf("%s",s)!=EOF)
        {   sum=0;b=1;
            stack<char> s1;
            stack<node> s2;
            for(i=0;s[i]!='';i++)
            {
                if(s[i]=='(')
                   s1.push(s[i]);
                else if(s[i]==')')
                     {
                         c=s1.top();
                         s1.pop();
                         s1.pop();
                         while(!s1.empty()&&s1.top()!='(')
                               {
                                  temp=s2.top();
                                  s2.pop();
                                  temp1=s2.top();
                                 if(temp1.n!=temp.m)
                                 {
                                     b=0;break;
                                 }
                                  sum+=temp1.m*temp1.n*temp.n;
                                  temp1.n=temp.n;
                                  s2.pop();
                                  s2.push(temp1);
                                  s1.pop();
                                }
                           s1.push(c);
                     }
                     else
                     {
                         if(!s1.empty()&&s1.top()!='(')
                         {
                             temp=s2.top();
                             if(temp.n!=hash[s[i]].m)
                             {
                                 b=0;break;
                             }
                             sum+=temp.m*temp.n*hash[s[i]].n;
                             temp.n=hash[s[i]].n;
                             s2.pop();
                             s2.push(temp);
                         }
                         else
                         {
                             s2.push(hash[s[i]]);
                             s1.push('#');
                         }
                     }
            }
            if(b)
              printf("%d
    ",sum);
            else
             printf("error
    ");
        }
        return 0;
    }
    

      

      

  • 相关阅读:
    tf.keras 用生成器读取图片数据+预处理
    pandas时间序列操作
    jupyter notebook 字体美化
    python响应式的数据可视化工具Dash
    python 地名地址解析(省、市、区县)
    将jupyter notebook嵌入博客园的博客
    Adaboost、GBDT、xgboost的原理基础
    数据预处理:分类变量实体嵌入做特征提取
    类不平衡问题的处理办法
    word2vec原理
  • 原文地址:https://www.cnblogs.com/wc1903036673/p/3430514.html
Copyright © 2011-2022 走看看