zoukankan      html  css  js  c++  java
  • dfs

    #include <malloc.h>  
    #include <iostream>  
    using namespace std;  
      
    #define INFINITY 32767  
    #define MAX_VEX 50 //最大顶点个数  
     
    #define OK 1  
    #define FALSE 0  
    #define TRUE 1  
    #define ERROR -1  
       
    bool *visited;  //动态分配访问标志数组  
       
    //图的邻接矩阵存储结构  
    typedef struct {  
        char *vexs;  //动态分配空间存储顶点向量  
        int arcs[MAX_VEX][MAX_VEX];  //邻接矩阵  
        int vexnum, arcnum;  //图的当前定点数和弧数   
    }Graph;  
      
      
    //图G中查找顶点c的位置  
    int LocateVex(Graph G, char c) {  
        for(int i = 0; i < G.vexnum; ++i) {  
            if(G.vexs[i] ==  c) return i;  
        }  
        return ERROR;  
    }  
        
    //创建无向网  
    void CreateUDN(Graph &G){  
        //采用数组(邻接矩阵)表示法,构造无向网G  
        cout << "请输入定点数和弧数:";  
        cin >> G.vexnum >> G.arcnum;  
        cout << "请输入" << G.vexnum << "个顶点" << endl;  
        G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char));  //需要开辟多一个空间存储''  
        //构造顶点向量  
        for(int i = 0; i < G.vexnum; i++) {  
            cout << "请输入第" << i+1 << "个顶点:";  
            cin >> G.vexs[i];  
        }  
        G.vexs[G.vexnum] = '';  
          
        //初始化邻接矩阵  
        for(i = 0; i < G.vexnum; ++i)   
            for( int j = 0; j < G.vexnum; j++)   
                G.arcs[i][j] = INFINITY;     
          
        cout << "请输入" << G.arcnum << "条弧" << endl;  
        char a, b;  
        int s1, s2;  
        for(i = 0; i < G.arcnum; ++i) {  
            cout << "请输入第" << i+1 << "条弧:";  
            cin >> a >> b ;  //输入依附于弧的权值  
            s1 = LocateVex(G,a);  //找到a和b在顶点向量中的位置  
            s2 = LocateVex(G,b);    
            G.arcs[s1][s2] = G.arcs[s2][s1] = 1;  //权值默认为1  
        }  
    }  
      
    //图G中顶点k的第一个邻接顶点  
    int FirstVex(Graph G,int k){  
        for(int i = 0; i < G.vexnum; ++i)   
            if (G.arcs[k][i] != INFINITY) return i;  
        return ERROR;  
    }  
      
    //返回i(相对于j)的下一个邻接顶点  
    int NextVex(Graph G,int i,int j){  
        for(int k = j+1; k < G.vexnum; ++k)   
            if(G.arcs[i][k] != INFINITY) return k;  
        return ERROR;  
    }  
      
    void DFS(Graph G, int v) {  
        //从第v个顶点出发递归地深度优先遍历图G  
        visited[v] = TRUE;  
        cout << G.vexs[v] << "  ";  
        for(int w = FirstVex(G,v); w >= 0; w = NextVex(G,v,w))  
            if(!visited[w]) DFS(G,w);  
    }  
      
    //深度优先遍历  
    void DFSTraverse(Graph G, int i) {  
        for(int j = 0; j < G.vexnum; ++j) {  //初始化所有的顶点状态为未被访问  
            visited[j] = FALSE;  
        }  
        //遍历结点  
        for(; i < G.vexnum; ++i)   
            if(!visited[i]) DFS(G,i);  
    }  
      
    //主函数  
    void main(){  
        Graph G;  
        CreateUDN(G);  
        visited = (bool *) malloc(G.vexnum * sizeof(bool));  
        cout << endl << "深度优先遍历:";  
        DFSTraverse(G,0);  
        cout << endl;  
    } 
    
  • 相关阅读:
    mac c++编译出现segmentation fault :11错误
    ssh 连接缓慢解决方法
    237. Delete Node in a Linked List
    203. Remove Linked List Elements
    Inversion of Control Containers and the Dependency Injection pattern
    82. Remove Duplicates from Sorted List II
    83. Remove Duplicates from Sorted List
    SxsTrace
    使用CCleaner卸载chrome
    decimal and double ToString problem
  • 原文地址:https://www.cnblogs.com/wc1903036673/p/3464998.html
Copyright © 2011-2022 走看看