zoukankan      html  css  js  c++  java
  • dfs

    #include <malloc.h>  
    #include <iostream>  
    using namespace std;  
      
    #define INFINITY 32767  
    #define MAX_VEX 50 //最大顶点个数  
     
    #define OK 1  
    #define FALSE 0  
    #define TRUE 1  
    #define ERROR -1  
       
    bool *visited;  //动态分配访问标志数组  
       
    //图的邻接矩阵存储结构  
    typedef struct {  
        char *vexs;  //动态分配空间存储顶点向量  
        int arcs[MAX_VEX][MAX_VEX];  //邻接矩阵  
        int vexnum, arcnum;  //图的当前定点数和弧数   
    }Graph;  
      
      
    //图G中查找顶点c的位置  
    int LocateVex(Graph G, char c) {  
        for(int i = 0; i < G.vexnum; ++i) {  
            if(G.vexs[i] ==  c) return i;  
        }  
        return ERROR;  
    }  
        
    //创建无向网  
    void CreateUDN(Graph &G){  
        //采用数组(邻接矩阵)表示法,构造无向网G  
        cout << "请输入定点数和弧数:";  
        cin >> G.vexnum >> G.arcnum;  
        cout << "请输入" << G.vexnum << "个顶点" << endl;  
        G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char));  //需要开辟多一个空间存储''  
        //构造顶点向量  
        for(int i = 0; i < G.vexnum; i++) {  
            cout << "请输入第" << i+1 << "个顶点:";  
            cin >> G.vexs[i];  
        }  
        G.vexs[G.vexnum] = '';  
          
        //初始化邻接矩阵  
        for(i = 0; i < G.vexnum; ++i)   
            for( int j = 0; j < G.vexnum; j++)   
                G.arcs[i][j] = INFINITY;     
          
        cout << "请输入" << G.arcnum << "条弧" << endl;  
        char a, b;  
        int s1, s2;  
        for(i = 0; i < G.arcnum; ++i) {  
            cout << "请输入第" << i+1 << "条弧:";  
            cin >> a >> b ;  //输入依附于弧的权值  
            s1 = LocateVex(G,a);  //找到a和b在顶点向量中的位置  
            s2 = LocateVex(G,b);    
            G.arcs[s1][s2] = G.arcs[s2][s1] = 1;  //权值默认为1  
        }  
    }  
      
    //图G中顶点k的第一个邻接顶点  
    int FirstVex(Graph G,int k){  
        for(int i = 0; i < G.vexnum; ++i)   
            if (G.arcs[k][i] != INFINITY) return i;  
        return ERROR;  
    }  
      
    //返回i(相对于j)的下一个邻接顶点  
    int NextVex(Graph G,int i,int j){  
        for(int k = j+1; k < G.vexnum; ++k)   
            if(G.arcs[i][k] != INFINITY) return k;  
        return ERROR;  
    }  
      
    void DFS(Graph G, int v) {  
        //从第v个顶点出发递归地深度优先遍历图G  
        visited[v] = TRUE;  
        cout << G.vexs[v] << "  ";  
        for(int w = FirstVex(G,v); w >= 0; w = NextVex(G,v,w))  
            if(!visited[w]) DFS(G,w);  
    }  
      
    //深度优先遍历  
    void DFSTraverse(Graph G, int i) {  
        for(int j = 0; j < G.vexnum; ++j) {  //初始化所有的顶点状态为未被访问  
            visited[j] = FALSE;  
        }  
        //遍历结点  
        for(; i < G.vexnum; ++i)   
            if(!visited[i]) DFS(G,i);  
    }  
      
    //主函数  
    void main(){  
        Graph G;  
        CreateUDN(G);  
        visited = (bool *) malloc(G.vexnum * sizeof(bool));  
        cout << endl << "深度优先遍历:";  
        DFSTraverse(G,0);  
        cout << endl;  
    } 
    
  • 相关阅读:
    npx
    EOS踩坑记 2
    Communication Model
    EOS踩坑记
    Windows导入EOS工程
    搭建EOS环境
    加入EOS主网
    Add Inline Actions
    Secondary Indices
    Data Persistence
  • 原文地址:https://www.cnblogs.com/wc1903036673/p/3464998.html
Copyright © 2011-2022 走看看