zoukankan      html  css  js  c++  java
  • dfs-bfs

    /图的遍历是指按某条搜索路径访问图中每个结点,使得每个结点均被访问一次,而且仅被访问一次。图的遍历有深度遍历算法和广度遍历算法 #include <malloc.h>  
    #include <iostream>  
    using namespace std;  
      
    #define INFINITY 32767  
    #define MAX_VEX 50 //最大顶点个数  
    #define QUEUE_SIZE (MAX_VEX+1) //队列长度
    
     
    #define OK 1  
    #define FALSE 0  
    #define TRUE 1  
    #define ERROR -1  
       
    bool *visited;  //动态分配访问标志数组  
       
    //图的邻接矩阵存储结构  
    typedef struct {  
        char *vexs;  //动态分配空间存储顶点向量  
        int arcs[MAX_VEX][MAX_VEX];  //邻接矩阵  
        int vexnum, arcnum;  //图的当前定点数和弧数   
    }Graph;  
    
    //队列类
    class Queue{
    public:
      void InitQueue(){
        base=(int *)malloc(QUEUE_SIZE*sizeof(int));
        front=rear=0;
      }
      void EnQueue(int e){
        base[rear]=e;
        rear=(rear+1)%QUEUE_SIZE;
      }
      void DeQueue(int &e){
        e=base[front];
        front=(front+1)%QUEUE_SIZE;
      }
      public:
    	int *base;
    	int front;
    	int rear;  
    };
      
      
    //图G中查找顶点c的位置  
    int LocateVex(Graph G, char c) {  
        for(int i = 0; i < G.vexnum; ++i) {  
            if(G.vexs[i] ==  c) return i;  
        }  
        return ERROR;  
    }  
        
    //创建无向网  
    void CreateUDN(Graph &G){  
        //采用数组(邻接矩阵)表示法,构造无向网G  
        cout << "请输入定点数和弧数:";  
        cin >> G.vexnum >> G.arcnum;  
        cout << "请输入" << G.vexnum << "个顶点" << endl;  
        G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char));  //需要开辟多一个空间存储''  
        //构造顶点向量  
        for(int i = 0; i < G.vexnum; i++) {  
            cout << "请输入第" << i+1 << "个顶点:";  
            cin >> G.vexs[i];  
        }  
        G.vexs[G.vexnum] = '';  
          
        //初始化邻接矩阵  
        for(i = 0; i < G.vexnum; ++i)   
            for( int j = 0; j < G.vexnum; j++)   
                G.arcs[i][j] = INFINITY;     
          
        cout << "请输入" << G.arcnum << "条弧" << endl;  
        char a, b;  
        int s1, s2;  
        for(i = 0; i < G.arcnum; ++i) {  
            cout << "请输入第" << i+1 << "条弧:";  
            cin >> a >> b ;  //输入依附于弧的权值  
            s1 = LocateVex(G,a);  //找到a和b在顶点向量中的位置  
            s2 = LocateVex(G,b);    
            G.arcs[s1][s2] = G.arcs[s2][s1] = 1;  //权值默认为1  
        }  
    }  
      
    //图G中顶点k的第一个邻接顶点  
    int FirstVex(Graph G,int k){  
        for(int i = 0; i < G.vexnum; ++i)   
            if (G.arcs[k][i] != INFINITY) return i;  
        return ERROR;  
    }  
      
    //返回i(相对于j)的下一个邻接顶点  
    int NextVex(Graph G,int i,int j){  
        for(int k = j+1; k < G.vexnum; ++k)   
            if(G.arcs[i][k] != INFINITY) return k;  
        return ERROR;  
    }  
      
    void DFS(Graph G, int v) {  
        //从第v个顶点出发递归地深度优先遍历图G  
        visited[v] = TRUE;  
        cout << G.vexs[v] << "  ";  
        for(int w = FirstVex(G,v); w >= 0; w = NextVex(G,v,w))  
            if(!visited[w]) DFS(G,w);  
    }  
      
    //深度优先遍历  
    void DFSTraverse(Graph G, int i) {  
        for(int j = 0; j < G.vexnum; ++j) {  //初始化所有的顶点状态为未被访问  
            visited[j] = FALSE;  
        }  
        //遍历结点  
        for(; i < G.vexnum; ++i)   
            if(!visited[i]) DFS(G,i);  
    }  
      
    //广度优先遍历
    void BFS(Graph G){
      int k;
      Queue Q; //辅助队列Q
      Q.InitQueue();
      for(int i=0;i<G.vexnum;i++)
        if(!visited[i]){ //i尚未访问
          visited[i]=true;
          printf("%c ",G.vexs[i]);
          Q.EnQueue(i); //i入列
          while(Q.front!=Q.rear){//队非空,出队
            Q.DeQueue(k); //队头元素出列并置为k
            for(int w=FirstVex(G,k);w>=0;w=NextVex(G,k,w))
              if(!visited[w]){ //w为k的尚未访问的邻接顶点
                visited[w]=true;
                printf("%c ",G.vexs[w]);
                Q.EnQueue(w);
              }
          }
        }
    }
    
    
    //主函数  
    void main(){  
        Graph G;  
        CreateUDN(G);  
        visited = (bool *) malloc(G.vexnum * sizeof(bool));  
        cout << endl << "深度优先遍历:";  
        DFSTraverse(G,0);  
        cout << endl << "广度BFS优先遍历:";  
        BFS(G);  
    
    
        cout << endl;  
    } 

      

    输入顶点数和弧数:8 9
    输入8个顶点.
    输入顶点0:a
    输入顶点1:b
    输入顶点2:c
    输入顶点3:d
    输入顶点4:e
    输入顶点5:f
    输入顶点6:g
    输入顶点7:h

    输入9条弧.
    输入弧0:a b 1
    输入弧1:b d 1
    输入弧2:b e 1
    输入弧3:d h 1
    输入弧4:e h 1
    输入弧5:a c 1
    输入弧6:c f 1
    输入弧7:c g 1
    输入弧8:f g 1
    深度优先遍历: a b d h e c f g
    广度优先遍历: a b c d e f g h
    程序结束.

  • 相关阅读:
    【算法导论】第11章,散列表
    【算法导论】第10章,基本数据结构
    【推荐系统实践】冷启动问题
    【算法导论】第8、9章,线性时间排序,中位数顺序统计量
    【推荐系统实践】协同过滤
    Java编程思想---第五章 初始化与清理(下)
    Java编程思想---第五章 初始化与清理(上)
    Java编程思想---第四章 控制执行流程
    Java编程思想---第三章 操作符
    去除MyEclipse频繁弹出的Update Progress窗口
  • 原文地址:https://www.cnblogs.com/wc1903036673/p/3465005.html
Copyright © 2011-2022 走看看