zoukankan      html  css  js  c++  java
  • 300. Longest Increasing Subsequence

    Problem statement

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    For example,
    Given [10, 9, 2, 5, 3, 7, 101, 18],
    The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

    Your algorithm should run in O(n2) complexity.

    Follow up: Could you improve it to O(n log n) time complexity?

    Solution

    This is one sequence DP problem. The dp array is one dimension. dp[i] means first i chars in the given string. The return value is not dp[n], it is one max value among dp[0 ... n - 1].

    dp[i] = max(dp[i], dp[j] + 1) if nums[i] == nums[j], meanwhile, update the max LIS.

    Time complexity is O(n * n).

    class Solution {
    public:
        int lengthOfLIS(vector<int>& nums) {
            int max_lis = 0;
            int size = nums.size();
            vector<int> lis(size, 1);
            for(int i = 0; i < size; i++){
                for(int j = 0; j < i; j++){
                    if(nums[i] > nums[j]){
                        lis[i] = max(lis[i], lis[j] + 1);
                    }
                }
                max_lis = max(max_lis, lis[i]);
            }
            return max_lis;
        }
    };
  • 相关阅读:
    如何仅仅修改每一页的页眉
    resize
    Linux搭建深度学习环境
    Image.open、cv2.imread
    any、all
    cookie
    any、all
    库文件
    出来混总要还的,要提醒自己提高核心竞争力
    “行百里者半九十”(现在才逐渐真正理解这些道理)
  • 原文地址:https://www.cnblogs.com/wdw828/p/6858867.html
Copyright © 2011-2022 走看看