zoukankan      html  css  js  c++  java
  • 强化学习Q-Learning算法详解

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)


    【强化学习】Q-Learning详解
    1、算法思想
    QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取动作获得较大的收益。

    2、公式推导
    举个例子如图有一个GridWorld的游戏从起点出发到达终点为胜利掉进陷阱为失败。智能体(Agent)、环境状态(environment)、奖励(reward)、动作(action)可以将问题抽象成一个马尔科夫决策过程,我们在每个格子都算是一个状态 $s_t $ , π(a|s)在s状态下采取动作a a∈A 。 P(s’|s,a)为在s状态下选择a动作转换到下一个状态s’的概率。R(s’|s,a)表示在s状态下采取a动作转移到s’的奖励reward,我们的目的很明确就是找到一条能够到达终点获得最大奖赏的策略。

    所以目标就是求出累计奖赏最大的策略的期望:

    4、实现代码

    值迭代部分

    # -*- coding: utf-8 -*-
    from environment import GraphicDisplay, Env
    
    class ValueIteration:
        def __init__(self, env):
            self.env = env
            # 2-d list for the value function
            self.value_table = [[0.0] * env.width for _ in range(env.height)]
            self.discount_factor = 0.9
    
        # get next value function table from the current value function table
        def value_iteration(self):
            next_value_table = [[0.0] * self.env.width
                                        for _ in range(self.env.height)]
            for state in self.env.get_all_states():
                if state == [2, 2]:
                    next_value_table[state[0]][state[1]] = 0.0
                    continue
                value_list = []
    
                for action in self.env.possible_actions:
                    next_state = self.env.state_after_action(state, action)
                    reward = self.env.get_reward(state, action)
                    next_value = self.get_value(next_state)
                    value_list.append((reward + self.discount_factor * next_value))
                # return the maximum value(it is the optimality equation!!)
                next_value_table[state[0]][state[1]] = round(max(value_list), 2)
            self.value_table = next_value_table
    
        # get action according to the current value function table
        def get_action(self, state):
            action_list = []
            max_value = -99999
    
            if state == [2, 2]:
                return []
    
            # calculating q values for the all actions and
            # append the action to action list which has maximum q value
            for action in self.env.possible_actions:
    
                next_state = self.env.state_after_action(state, action)
                reward = self.env.get_reward(state, action)
                next_value = self.get_value(next_state)
                value = (reward + self.discount_factor * next_value)
    
                if value > max_value:
                    action_list.clear()
                    action_list.append(action)
                    max_value = value
                elif value == max_value:
                    action_list.append(action)
    
            return action_list
    
        def get_value(self, state):
            return round(self.value_table[state[0]][state[1]], 2)
    
    if __name__ == "__main__":
        env = Env()
        value_iteration = ValueIteration(env)
        grid_world = GraphicDisplay(value_iteration)
        grid_world.mainloop()
    

      

    动态环境部分

    import tkinter as tk
    import time
    import numpy as np
    import random
    from PIL import ImageTk, Image
    
    PhotoImage = ImageTk.PhotoImage
    UNIT = 100  # pixels
    HEIGHT = 5  # grid height
    WIDTH = 5  # grid width
    TRANSITION_PROB = 1
    POSSIBLE_ACTIONS = [0, 1, 2, 3]  # up, down, left, right
    ACTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1)]  # actions in coordinates
    REWARDS = []
    
    
    class GraphicDisplay(tk.Tk):
        def __init__(self, value_iteration):
            super(GraphicDisplay, self).__init__()
            self.title('Value Iteration')
            self.geometry('{0}x{1}'.format(HEIGHT * UNIT, HEIGHT * UNIT + 50))
            self.texts = []
            self.arrows = []
            self.env = Env()
            self.agent = value_iteration
            self.iteration_count = 0
            self.improvement_count = 0
            self.is_moving = 0
            (self.up, self.down, self.left,
             self.right), self.shapes = self.load_images()
            self.canvas = self._build_canvas()
            self.text_reward(2, 2, "R : 1.0")
            self.text_reward(1, 2, "R : -1.0")
            self.text_reward(2, 1, "R : -1.0")
    
        def _build_canvas(self):
            canvas = tk.Canvas(self, bg='white',
                               height=HEIGHT * UNIT,
                               width=WIDTH * UNIT)
            # buttons
            iteration_button = tk.Button(self, text="Calculate",
                                         command=self.calculate_value)
            iteration_button.configure(width=10, activebackground="#33B5E5")
            canvas.create_window(WIDTH * UNIT * 0.13, (HEIGHT * UNIT) + 10,
                                 window=iteration_button)
    
            policy_button = tk.Button(self, text="Print Policy",
                                      command=self.print_optimal_policy)
            policy_button.configure(width=10, activebackground="#33B5E5")
            canvas.create_window(WIDTH * UNIT * 0.37, (HEIGHT * UNIT) + 10,
                                 window=policy_button)
    
            policy_button = tk.Button(self, text="Move",
                                      command=self.move_by_policy)
            policy_button.configure(width=10, activebackground="#33B5E5")
            canvas.create_window(WIDTH * UNIT * 0.62, (HEIGHT * UNIT) + 10,
                                 window=policy_button)
    
            policy_button = tk.Button(self, text="Clear", command=self.clear)
            policy_button.configure(width=10, activebackground="#33B5E5")
            canvas.create_window(WIDTH * UNIT * 0.87, (HEIGHT * UNIT) + 10,
                                 window=policy_button)
    
            # create grids
            for col in range(0, WIDTH * UNIT, UNIT):  # 0~400 by 80
                x0, y0, x1, y1 = col, 0, col, HEIGHT * UNIT
                canvas.create_line(x0, y0, x1, y1)
            for row in range(0, HEIGHT * UNIT, UNIT):  # 0~400 by 80
                x0, y0, x1, y1 = 0, row, HEIGHT * UNIT, row
                canvas.create_line(x0, y0, x1, y1)
    
            # add img to canvas
            self.rectangle = canvas.create_image(50, 50, image=self.shapes[0])
            canvas.create_image(250, 150, image=self.shapes[1])
            canvas.create_image(150, 250, image=self.shapes[1])
            canvas.create_image(250, 250, image=self.shapes[2])
    
            # pack all
            canvas.pack()
    
            return canvas
    
        def load_images(self):
            PhotoImage = ImageTk.PhotoImage
            up = PhotoImage(Image.open("../img/up.png").resize((13, 13)))
            right = PhotoImage(Image.open("../img/right.png").resize((13, 13)))
            left = PhotoImage(Image.open("../img/left.png").resize((13, 13)))
            down = PhotoImage(Image.open("../img/down.png").resize((13, 13)))
            rectangle = PhotoImage(
                Image.open("../img/rectangle.png").resize((65, 65)))
            triangle = PhotoImage(
                Image.open("../img/triangle.png").resize((65, 65)))
            circle = PhotoImage(Image.open("../img/circle.png").resize((65, 65)))
            return (up, down, left, right), (rectangle, triangle, circle)
    
        def clear(self):
    
            if self.is_moving == 0:
                self.iteration_count = 0
                self.improvement_count = 0
                for i in self.texts:
                    self.canvas.delete(i)
    
                for i in self.arrows:
                    self.canvas.delete(i)
    
                self.agent.value_table = [[0.0] * WIDTH for _ in range(HEIGHT)]
    
                x, y = self.canvas.coords(self.rectangle)
                self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
    
        def reset(self):
            self.update()
            time.sleep(0.5)
            self.canvas.delete(self.rectangle)
            return self.canvas.coords(self.rectangle)
    
        def text_value(self, row, col, contents, font='Helvetica', size=12,
                       style='normal', anchor="nw"):
            origin_x, origin_y = 85, 70
            x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
            font = (font, str(size), style)
            text = self.canvas.create_text(x, y, fill="black", text=contents,
                                           font=font, anchor=anchor)
            return self.texts.append(text)
    
        def text_reward(self, row, col, contents, font='Helvetica', size=12,
                        style='normal', anchor="nw"):
            origin_x, origin_y = 5, 5
            x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
            font = (font, str(size), style)
            text = self.canvas.create_text(x, y, fill="black", text=contents,
                                           font=font, anchor=anchor)
            return self.texts.append(text)
    
        def rectangle_move(self, action):
            base_action = np.array([0, 0])
            location = self.find_rectangle()
            self.render()
            if action == 0 and location[0] > 0:  # up
                base_action[1] -= UNIT
            elif action == 1 and location[0] < HEIGHT - 1:  # down
                base_action[1] += UNIT
            elif action == 2 and location[1] > 0:  # left
                base_action[0] -= UNIT
            elif action == 3 and location[1] < WIDTH - 1:  # right
                base_action[0] += UNIT
    
            self.canvas.move(self.rectangle, base_action[0],
                             base_action[1])  # move agent
    
        def find_rectangle(self):
            temp = self.canvas.coords(self.rectangle)
            x = (temp[0] / 100) - 0.5
            y = (temp[1] / 100) - 0.5
            return int(y), int(x)
    
        def move_by_policy(self):
    
            if self.improvement_count != 0 and self.is_moving != 1:
                self.is_moving = 1
                x, y = self.canvas.coords(self.rectangle)
                self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
    
                x, y = self.find_rectangle()
                while len(self.agent.get_action([x, y])) != 0:
                    action = random.sample(self.agent.get_action([x, y]), 1)[0]
                    self.after(100, self.rectangle_move(action))
                    x, y = self.find_rectangle()
                self.is_moving = 0
    
        def draw_one_arrow(self, col, row, action):
            if col == 2 and row == 2:
                return
            if action == 0:  # up
                origin_x, origin_y = 50 + (UNIT * row), 10 + (UNIT * col)
                self.arrows.append(self.canvas.create_image(origin_x, origin_y,
                                                            image=self.up))
            elif action == 1:  # down
                origin_x, origin_y = 50 + (UNIT * row), 90 + (UNIT * col)
                self.arrows.append(self.canvas.create_image(origin_x, origin_y,
                                                            image=self.down))
            elif action == 3:  # right
                origin_x, origin_y = 90 + (UNIT * row), 50 + (UNIT * col)
                self.arrows.append(self.canvas.create_image(origin_x, origin_y,
                                                            image=self.right))
            elif action == 2:  # left
                origin_x, origin_y = 10 + (UNIT * row), 50 + (UNIT * col)
                self.arrows.append(self.canvas.create_image(origin_x, origin_y,
                                                            image=self.left))
    
        def draw_from_values(self, state, action_list):
            i = state[0]
            j = state[1]
            for action in action_list:
                self.draw_one_arrow(i, j, action)
    
        def print_values(self, values):
            for i in range(WIDTH):
                for j in range(HEIGHT):
                    self.text_value(i, j, values[i][j])
    
        def render(self):
            time.sleep(0.1)
            self.canvas.tag_raise(self.rectangle)
            self.update()
    
        def calculate_value(self):
            self.iteration_count += 1
            for i in self.texts:
                self.canvas.delete(i)
            self.agent.value_iteration()
            self.print_values(self.agent.value_table)
    
        def print_optimal_policy(self):
            self.improvement_count += 1
            for i in self.arrows:
                self.canvas.delete(i)
            for state in self.env.get_all_states():
                action = self.agent.get_action(state)
                self.draw_from_values(state, action)
    
    
    class Env:
        def __init__(self):
            self.transition_probability = TRANSITION_PROB
            self.width = WIDTH  # Width of Grid World
            self.height = HEIGHT  # Height of GridWorld
            self.reward = [[0] * WIDTH for _ in range(HEIGHT)]
            self.possible_actions = POSSIBLE_ACTIONS
            self.reward[2][2] = 1  # reward 1 for circle
            self.reward[1][2] = -1  # reward -1 for triangle
            self.reward[2][1] = -1  # reward -1 for triangle
            self.all_state = []
    
            for x in range(WIDTH):
                for y in range(HEIGHT):
                    state = [x, y]
                    self.all_state.append(state)
    
        def get_reward(self, state, action):
            next_state = self.state_after_action(state, action)
            return self.reward[next_state[0]][next_state[1]]
    
        def state_after_action(self, state, action_index):
            action = ACTIONS[action_index]
            return self.check_boundary([state[0] + action[0], state[1] + action[1]])
    
        @staticmethod
        def check_boundary(state):
            state[0] = (0 if state[0] < 0 else WIDTH - 1
            if state[0] > WIDTH - 1 else state[0])
            state[1] = (0 if state[1] < 0 else HEIGHT - 1
            if state[1] > HEIGHT - 1 else state[1])
            return state
    
        def get_transition_prob(self, state, action):
            return self.transition_probability
    
        def get_all_states(self):
            return self.all_state

    转载https://blog.csdn.net/qq_30615903/article/details/80739243

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

     
  • 相关阅读:
    小程序配置安装
    微信小程序--录制音频,播放音频
    微信小程序报错.wxss无法找到
    linux 安装 elasticsearch
    Ubuntu 安装Logstash
    python 开发微信 自定义菜单
    微信 python搭建服务器
    vue 本地存储数据 sessionStorage
    luogu1742 最小圆覆盖
    luogu1501 [国家集训队]Tree II
  • 原文地址:https://www.cnblogs.com/webRobot/p/10062267.html
Copyright © 2011-2022 走看看