zoukankan      html  css  js  c++  java
  • auto-sklearn

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

    auto-sklearn官网

    https://automl.github.io/auto-sklearn/master/installation.html

    https://automl.github.io/auto-sklearn/master/

    auto-sklearn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

    import autosklearn.classification
    cls = autosklearn.classification.AutoSklearnClassifier()
    cls.fit(X_train, y_train)
    predictions = cls.predict(X_test)
    

      

    auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimizationmeta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .

    Example

    import autosklearn.classification
    import sklearn.model_selection
    import sklearn.datasets
    import sklearn.metrics
    X, y = sklearn.datasets.load_digits(return_X_y=True)
    X_train, X_test, y_train, y_test = 
     sklearn.model_selection.train_test_split(X, y, random_state=1)
    automl = autosklearn.classification.AutoSklearnClassifier()
    automl.fit(X_train, y_train)
    y_hat = automl.predict(X_test)
    print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
    

      

    This will run for one hour and should result in an accuracy above 0.98.

    License

    auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

    Citing auto-sklearn

    If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

    Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).

    Bibtex entry:

    @incollection{NIPS2015_5872,
       title = {Efficient and Robust Automated Machine Learning},
       author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
                 Springenberg, Jost and Blum, Manuel and Hutter, Frank},
       booktitle = {Advances in Neural Information Processing Systems 28},
       editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
       pages = {2962--2970},
       year = {2015},
       publisher = {Curran Associates, Inc.},
       url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
    }
    

    Contributing

    We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.

    Note

    To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.

    When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.

     

     auto-sklearn安装官网(不支持Windows系统)

     https://automl.github.io/auto-sklearn/master/installation.html

    Installation

    System requirements

    auto-sklearn has the following system requirements:

    For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.

    Installing auto-sklearn

    Please install all dependencies manually with:

    curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install
    

    Then install auto-sklearn:

    pip install auto-sklearn
    

    We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.

    If the pip installation command fails, make sure you have the System requirements installed correctly.

    Ubuntu installation

    To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:

    sudo apt-get install build-essential swig
    

    Anaconda installation

    Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.

    A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):

    conda install gxx_linux-64 gcc_linux-64 swig
    

    Windows/OSX compatibility

    Windows

    auto-sklearn relies heavily on the Python module resourceresource is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.

    Possible solutions (not tested):

    • Windows 10 bash shell

    • virtual machine

    • docker image

    Mac OSX

    We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:

    • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

    • OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.

    In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

    Possible other solutions (not tested):

    • virtual machine

    • docker image

    python信用评分卡建模(附代码,博主录制)

  • 相关阅读:
    stm32 fatfs 文件系统分析和代码解析
    STM32 USB协议和代码分析
    微型跟踪器A产品体验和分析
    辅听一号产品体验和测评
    华为sound x智能音箱初体验
    TPC-H 分析
    论文解析 -- TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark
    Calcite分析 -- Cost
    Calcite分析 -- ConverterRule
    Calcite分析 -- TopDownRuleDriver
  • 原文地址:https://www.cnblogs.com/webRobot/p/10942569.html
Copyright © 2011-2022 走看看