上一篇已经完成数据集的准备和指标筛选,本篇继续介绍模型构建和评分卡的创建。
五、模型训练
信用评分卡的模型一般采用逻辑回归模型,属于二分类模型,Python 中的sklearn.linear_model导入LogisticRegression即可。
#入模定量和定性指标 model_data = data[np.append(quant_model_vars,qual_model_vars)] # model_data_WOE = pd.DataFrame() model_data_WOE['duration']=duration_WoE model_data_WOE['amount']=amount_WoE model_data_WOE['age']=age_WoE model_data_WOE['installment_rate']=installment_rate_WoE model_data_WOE['status']=status_WoE model_data_WOE['credit_history']=credit_history_WoE model_data_WOE['savings']=savings_WoE model_data_WOE['property']=property_WoE model_data_WOE['employment_duration']=employment_duration_WoE model_data_WOE['purpose']=purpose_WoE #model_data_WOE['credit_risk']=credit_risk #逻辑回归 model = LogisticRegression() model.fit(model_data_WOE,credit_risk) coefficients = model.coef_.ravel() intercept = model.intercept_[0]
注:Python中的模型不够R中模型友好,想看模型的变量、系数、检验之类的都比较麻烦,要一个变量一个变量去找,然后输出打印,反之R的模型结果就友好很多了,一个summary函数就把全部概况显示出来了。
###########自定义ks函数############# def predict_df(model,data,label,feature=None): if feature: df_feature=data.loc[:,feature] else: all_feature = list(data.columns.values) all_feature.remove(label) df_feature=data.loc[:,all_feature] df_prob=model.predict(df_feature) df_pred=pd.Series(df_prob).map(lambda x:1 if x>0.5 else 0) df=pd.DataFrame() df['predict']=df_pred df['label']=data.loc[:,label].values df['score']=df_prob return df def ks(data,model,label): data_df = predict_df(model,data,label) KS_data = data_df.sort_values(by='score',ascending=True) KS_data['Bad'] = KS_data['label'].cumsum() / KS_data['label'].sum() KS_data['Count'] = np.arange(1 , len(KS_data['label']) + 1) KS_data['Good'] = (KS_data['Count'] - KS_data['label'].cumsum() ) / (len(KS_data['label']) - KS_data['label'].sum()) KS_data.index=KS_data['Count'] ks = KS_data.iloc[::int(len(KS_data)/100),:] ks.index = np.arange(len(ks)) return ks def ks_plot(ks_df): plt.figure(figsize=(6, 5)) plt.subplot(111) plt.plot(ks_df['Bad'], lw=3.5, color='r', label='Bad') # train_ks['Bad'] plt.plot(ks_df['Good'], lw=3.5, color='g', label='Good') # train_ks['Good'] plt.legend(loc=4) plt.grid(True) plt.axis('tight') plt.title('The KS Curve of data') plt.show()
KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估,
指标衡量的是好坏样本累计分部之间的差值。 好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强,通常来讲,KS>0.2即表示模型有较好的预测准确性。经过计算,模型的KS值为0.35,模型效果较好,如下:
六、评分卡
引用文献的评分卡计算方法:
一般评分卡公式:Score=A - B * log(Odds)
通常情况下,需要设定两个假设:
(1)给某个特定的比率设定特定的预期分值;
(2)确定比率翻番的分数(PDO)
根据以上的分析,我们首先假设比率为x的特定点的分值为P。则比率为2x的点的分值应该为P+PDO。代入式中,可以得到如下两个等式:
P = A - B * log(x)
P - PDO = A - B * log(2x)
本文中通过指定特定比率(好坏比)(1/20)的特定分值(50)和比率翻番的分数(10),来计算评分卡的系数alpha和beta
def alpha_beta(basepoints,baseodds,pdo): beta = pdo/math.log(2) alpha = basepoints + beta * math.log(baseodds) return alpha,beta
评分卡公式:Score=6.78 - 14.43 * log(Odds)
而 ,代入WOE转换后的变量并进行变化,可得到最终的评分卡公式:
式中ωijωij 为第i行第j个变量的WOE,为已知变量;βiβi为逻辑回归方程中的系数,为已知变量;δijδij为二元变量,表示变量i是否取第j个值。
根据以上表格可计算出指标各分段的分值
#计算基础分值 basepoint = round(alpha - beta * intercept) #变量_score duration_score = np.round(model_data_WOE['duration']*coefficients[0]*beta) amount_score = np.round(model_data_WOE['amount']*coefficients[1]*beta) age_score = np.round(model_data_WOE['age']*coefficients[2]*beta) installment_rate_score = np.round(model_data_WOE['installment_rate']*coefficients[2]*beta) status_score = np.round(model_data_WOE['status']*coefficients[4]*beta) credit_history_score = np.round(model_data_WOE['credit_history']*coefficients[5]*beta) savings_score = np.round(model_data_WOE['savings']*coefficients[6]*beta) property_score = np.round(model_data_WOE['property']*coefficients[7]*beta) employment_duration_score = np.round(model_data_WOE['employment_duration']*coefficients[8]*beta) purpose_score = np.round(model_data_WOE['purpose']*coefficients[9]*beta) #变量的分值 duration_scoreCard = pd.DataFrame(duration_Cutpoint,duration_score).drop_duplicates() amount_scoreCard = pd.DataFrame(amount_Cutpoint,amount_score).drop_duplicates() age_scoreCard = pd.DataFrame(age_Cutpoint,age_score).drop_duplicates() installment_rate_scoreCard = pd.DataFrame(installment_rate_Cutpoint,installment_rate_score).drop_duplicates() status_scoreCard = pd.DataFrame(np.array(discrete_data['status']),status_score).drop_duplicates() credit_history_scoreCard = pd.DataFrame(np.array(discrete_data['credit_history']),credit_history_score).drop_duplicates() savings_scoreCard = pd.DataFrame(np.array(discrete_data['savings']),savings_score).drop_duplicates() property_scoreCard = pd.DataFrame(np.array(discrete_data['property']),property_score).drop_duplicates() employment_duration_scoreCard = pd.DataFrame(np.array(discrete_data['employment_duration']),employment_duration_score).drop_duplicates() purpose_scoreCard = pd.DataFrame(np.array(discrete_data['purpose']),purpose_score).drop_duplicates()
转载https://blog.csdn.net/kxiaozhuk/article/details/84612632
至此,信用评分卡的建模介绍到这里,欢迎学习我的python信用评分卡课程。