zoukankan      html  css  js  c++  java
  • N-Gram

     
     
    N-Gram是大词汇连续语音识别中常用的一种语言模型,对中文而言,我们称之为汉语语言模型(CLM, Chinese Language Model)。
     
    中文名
    汉语语言模型
    外文名
    N-Gram
    定    义
    计算出具有最大概率的句子
    基    于
    该模型基于这样一种假设
    汉语语言模型利用上下文中相邻词间的搭配信息,在需要把连续无空格的拼 音、笔划,或代表字母或笔划的数字,转换成汉字串(即句子)时,可以计算出具有最大概率的句子,从而实现到汉字的自动转换,无需用户手动选择,避开了许多 汉字对应一个相同的拼音(或笔划串,或数字串)的重码问题。
    该模型基于这样一种假设,第N个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。
     
     
    https://en.wikipedia.org/wiki/N-gram

    In the fields of computational linguistics and probability, an n-gram is a contiguous sequence of n items from a given sequence of text or speech. The items can be phonemes, syllables, letters, words or base pairs according to the application. The n-grams typically are collected from a text or speech corpus. When the items are words, n-grams may also be called shingles.[1]

    An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram". Larger sizes are sometimes referred to by the value of n, e.g., "four-gram", "five-gram", and so on.

    Contents

    Applications

    An n-gram model is a type of probabilistic language model for predicting the next item in such a sequence in the form of a (n − 1)–order Markov model.[2] n-gram models are now widely used in probability, communication theory, computational linguistics (for instance, statistical natural language processing), computational biology (for instance, biological sequence analysis), and data compression. Two benefits of n-gram models (and algorithms that use them) are simplicity and scalability – with larger n, a model can store more context with a well-understood space–time tradeoff, enabling small experiments to scale up efficiently.

    Examples

    Figure 1 n-gram examples from various disciplines
    FieldUnitSample sequence1-gram sequence2-gram sequence3-gram sequence
    Vernacular name  unigrambigramtrigram
    Order of resulting Markov model  012
    Protein sequencing amino acid … Cys-Gly-Leu-Ser-Trp … …, Cys, Gly, Leu, Ser, Trp, … …, Cys-Gly, Gly-Leu, Leu-Ser, Ser-Trp, … …, Cys-Gly-Leu, Gly-Leu-Ser, Leu-Ser-Trp, …
    DNA sequencing base pair …AGCTTCGA… …, A, G, C, T, T, C, G, A, … …, AG, GC, CT, TT, TC, CG, GA, … …, AGC, GCT, CTT, TTC, TCG, CGA, …
    Computational linguistics character …to_be_or_not_to_be… …, t, o, _, b, e, _, o, r, _, n, o, t, _, t, o, _, b, e, … …, to, o_, _b, be, e_, _o, or, r_, _n, no, ot, t_, _t, to, o_, _b, be, … …, to_, o_b, _be, be_, e_o, _or, or_, r_n, _no, not, ot_, t_t, _to, to_, o_b, _be, …
    Computational linguistics word … to be or not to be … …, to, be, or, not, to, be, … …, to be, be or, or not, not to, to be, … …, to be or, be or not, or not to, not to be, …

    Figure 1 shows several example sequences and the corresponding 1-gram, 2-gram and 3-gram sequences.

    Here are further examples; these are word-level 3-grams and 4-grams (and counts of the number of times they appeared) from the Google n-gram corpus.[3]

    • ceramics collectables collectibles (55)
    • ceramics collectables fine (130)
    • ceramics collected by (52)
    • ceramics collectible pottery (50)
    • ceramics collectibles cooking (45)

    4-grams

    • serve as the incoming (92)
    • serve as the incubator (99)
    • serve as the independent (794)
    • serve as the index (223)
    • serve as the indication (72)
    • serve as the indicator (120)

    n-gram models

    An n-gram model models sequences, notably natural languages, using the statistical properties of n-grams.

    This idea can be traced to an experiment by Claude Shannon's work in information theory. Shannon posed the question: given a sequence of letters (for example, the sequence "for ex"), what is the likelihood of the next letter? From training data, one can derive a probability distribution for the next letter given a history of size

    More concisely, an n-gram model predicts

    Note that in a simple n-gram language model, the probability of a word, conditioned on some number of previous words (one word in a bigram model, two words in a trigram model, etc.) can be described as following a categorical distribution (often imprecisely called a "multinomial distribution").

    In practice, the probability distributions are smoothed by assigning non-zero probabilities to unseen words or n-grams; see smoothing techniques.

    Applications and considerations

    n-gram models are widely used in statistical natural language processing. In speech recognition, phonemes and sequences of phonemes are modeled using a n-gram distribution. For parsing, words are modeled such that each n-gram is composed of n words. For language identification, sequences of characters/graphemes (e.g., letters of the alphabet) are modeled for different languages.[4] For sequences of characters, the 3-grams (sometimes referred to as "trigrams") that can be generated from "good morning" are "goo", "ood", "od ", "d m", " mo", "mor" and so forth (sometimes the beginning and end of a text are modeled explicitly, adding "__g", "_go", "ng_", and "g__"). For sequences of words, the trigrams that can be generated from "the dog smelled like a skunk" are "# the dog", "the dog smelled", "dog smelled like", "smelled like a", "like a skunk" and "a skunk #".

    Practitioners[who?] more interested in multiple word terms might preprocess strings to remove spaces.[who?] Many simply collapse whitespace to a single space while preserving paragraph marks, because the whitespace is frequently either an element of writing style or introduces layout or presentation not required by the prediction and deduction methodology. Punctuation is also commonly reduced or removed by preprocessing and is frequently used to trigger functionality.

    n-grams can also be used for sequences of words or almost any type of data. For example, they have been used for extracting features for clustering large sets of satellite earth images and for determining what part of the Earth a particular image came from.[5] They have also been very successful as the first pass in genetic sequence search and in the identification of the species from which short sequences of DNA originated.[6]

    n-gram models are often criticized because they lack any explicit representation of long range dependency. This is because the only explicit dependency range is (n − 1) tokens for an n-gram model, and since natural languages incorporate many cases of unbounded dependencies (such as wh-movement), this means that an n-gram model cannot in principle distinguish unbounded dependencies from noise (since long range correlations drop exponentially with distance for any Markov model). For this reason, n-gram models have not made much impact on linguistic theory, where part of the explicit goal is to model such dependencies.

    Another criticism that has been made is that Markov models of language, including n-gram models, do not explicitly capture the performance/competence distinction. This is because n-gram models are not designed to model linguistic knowledge as such, and make no claims to being (even potentially) complete models of linguistic knowledge; instead, they are used in practical applications.

    In practice, n-gram models have been shown to be extremely effective in modeling language data, which is a core component in modern statistical language applications.

    Most modern applications that rely on n-gram based models, such as machine translation applications, do not rely exclusively on such models; instead, they typically also incorporate Bayesian inference. Modern statistical models are typically made up of two parts, a prior distribution describing the inherent likelihood of a possible result and a likelihood function used to assess the compatibility of a possible result with observed data. When a language model is used, it is used as part of the prior distribution (e.g. to gauge the inherent "goodness" of a possible translation), and even then it is often not the only component in this distribution.

    Handcrafted features of various sorts are also used, for example variables that represent the position of a word in a sentence or the general topic of discourse. In addition, features based on the structure of the potential result, such as syntactic considerations, are often used. Such features are also used as part of the likelihood function, which makes use of the observed data. Conventional linguistic theory can be incorporated in these features (although in practice, it is rare that features specific to generative or other particular theories of grammar are incorporated, as computational linguists tend to be "agnostic" towards individual theories of grammar[citation needed]).

    Out-of-vocabulary words

    An issue when using n-gram language models are out-of-vocabulary (OOV) words. They are encountered in computational linguistics and natural language processing when the input includes words which were not present in a system's dictionary or database during its preparation. By default, when a language model is estimated, the entire observed vocabulary is used. In some cases, it may be necessary to estimate the language model with a specific fixed vocabulary. In such a scenario, the n-grams in the corpus that contain an out-of-vocabulary word are ignored. The n-gram probabilities are smoothed over all the words in the vocabulary even if they were not observed.[7]

    Nonetheless, it is essential in some cases to explicitly model the probability of out-of-vocabulary words by introducing a special token (e.g. <unk>) into the vocabulary. Out-of-vocabulary words in the corpus are effectively replaced with this special <unk> token before n-grams counts are cumulated. With this option, it is possible to estimate the transition probabilities of n-grams involving out-of-vocabulary words.[8]

    n-grams for approximate matching

    n-grams can also be used for efficient approximate matching. By converting a sequence of items to a set of n-grams, it can be embedded in a vector space, thus allowing the sequence to be compared to other sequences in an efficient manner. For example, if we convert strings with only letters in the English alphabet into single character 3-grams, we get a

    Another method for approximate matching is signature files. The study reported in [9] shows that a bit-sliced signature file can be compressed to a smaller size than an inverted file which is the standard way of implementing a vector space approach. With a signature width less than half the number of unique n-grams, the signature file method is about as fast as the inverted file method, and significantly smaller.

    It is also possible to take a more principled approach to the statistics of n-grams, modeling similarity as the likelihood that two strings came from the same source directly in terms of a problem in Bayesian inference.

    n-gram-based searching can also be used for plagiarism detection.

    Other applications

    n-grams find use in several areas of computer science, computational linguistics, and applied mathematics.

    They have been used to:

    Bias-versus-variance trade-off

    To choose a value for n in an n-gram model, it is necessary to find the right trade off between the stability of the estimate against its appropriateness. This means that trigram (i.e. triplets of words) is a common choice with large training corpora (millions of words), whereas a bigram is often used with smaller ones.

    Smoothing techniques

    There are problems of balance weight between infrequent grams (for example, if a proper name appeared in the training data) and frequent grams. Also, items not seen in the training data will be given a probability of 0.0 without smoothing. For unseen but plausible data from a sample, one can introduce pseudocounts. Pseudocounts are generally motivated on Bayesian grounds.

    In practice it is necessary to smooth the probability distributions by also assigning non-zero probabilities to unseen words or n-grams. The reason is that models derived directly from the n-gram frequency counts have severe problems when confronted with any n-grams that have not explicitly been seen before – the zero-frequency problem. Various smoothing methods are used, from simple "add-one" (Laplace) smoothing (assign a count of 1 to unseen n-grams; see Rule of succession) to more sophisticated models, such as Good–Turing discounting or back-off models. Some of these methods are equivalent to assigning a prior distribution to the probabilities of the n-grams and using Bayesian inference to compute the resulting posterior n-gram probabilities. However, the more sophisticated smoothing models were typically not derived in this fashion, but instead through independent considerations.

    Skip-gram

    In the field of computational linguistics, in particular language modeling, skip-grams[10] are a generalization of n-grams in which the components (typically words) need not be consecutive in the text under consideration, but may leave gaps that are skipped over.[11] They provide one way of overcoming the data sparsity problem found with conventional n-gram analysis.

    Formally, an n-gram is a consecutive subsequence of length n of some sequence of tokens w1wn. A k-skip-n-gram is a length-n subsequence where the components occur at distance at most k from each other.

    For example, in the input text:

    the rain in Spain falls mainly on the plain

    the set of 1-skip-2-grams includes all the bigrams (2-grams), and in addition the subsequences

    the in, rain Spain, in falls, Spain mainly, falls on, mainly the, and on plain.

    Syntactic n-grams

    Syntactic n-grams are n-grams defined by paths in syntactic dependency or constituent trees rather than the linear structure of the text.[12][13][14] For example, the sentence "economic news has little effect on financial markets" can be transformed to syntactic n-grams following the tree structure of its dependency relations: news-economic, effect-little, effect-on-markets-financial.[12]

    Syntactic n-grams are intended to reflect syntactic structure more faithfully than linear n-grams, and have many of the same applications, especially as features in a Vector Space Model. Syntactic n-grams for certain tasks gives better results than the use of standard n-grams, for example, for authorship attribution.[15]

    See also

     
     
     

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149(欢迎关注博主主页,学习python视频资源)

     
     
     
  • 相关阅读:
    Github 简明教程--GitHub这么火,测试员你不学学吗?
    IT行业,尤其是软件测试,怎么才能月薪突破2万?
    linux 下cmake 编译 ,调用,调试 poco 1.6.0 小记
    ffmpeg(2.6) rockplayer android 下编译 小记.
    完成端口
    C++四种强制转换
    方法区(Method Area)基础知识
    逃逸分析
    堆空间参数设置小结
    堆中的线程私有缓存区域TLAB(Thread Local Allocation Buffer)
  • 原文地址:https://www.cnblogs.com/webRobot/p/6047640.html
Copyright © 2011-2022 走看看