zoukankan      html  css  js  c++  java
  • 自然语言17_Chinking with NLTK

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

     

    https://www.pythonprogramming.net/chinking-nltk-tutorial/?completed=/chunking-nltk-tutorial/

     代码

    # -*- coding: utf-8 -*-
    """
    Created on Sun Nov 13 09:14:13 2016
    
    @author: daxiong
    """
    import nltk
    from nltk.corpus import state_union
    from nltk.tokenize import PunktSentenceTokenizer
    
    #训练数据
    train_text=state_union.raw("2005-GWBush.txt")
    #测试数据
    sample_text=state_union.raw("2006-GWBush.txt")
    '''
     Punkt is designed to learn parameters (a list of abbreviations, etc.) 
     unsupervised from a corpus similar to the target domain. 
     The pre-packaged models may therefore be unsuitable: 
     use PunktSentenceTokenizer(text) to learn parameters from the given text
    '''
    #我们现在训练punkttokenizer(分句器)
    custom_sent_tokenizer=PunktSentenceTokenizer(train_text)
    #训练后,我们可以使用punkttokenizer(分句器)
    tokenized=custom_sent_tokenizer.tokenize(sample_text)
    
    '''
    nltk.pos_tag(["fire"]) #pos_tag(列表)
    Out[19]: [('fire', 'NN')]
    '''
    '''
    #测试语句
    words=nltk.word_tokenize(tokenized[0])
    tagged=nltk.pos_tag(words)
    chunkGram=r"""Chunk:{<RB.?>*<VB.?>*<NNP>+<NN>?}"""
    chunkParser=nltk.RegexpParser(chunkGram)
    chunked=chunkParser.parse(tagged)
    #lambda t:t.label()=='Chunk' 包含Chunk标签的列
    for subtree in chunked.subtrees(filter=lambda t:t.label()=='Chunk'):
        print(subtree)
    '''
    
    #文本词性标记函数
    def process_content():
        try:
            for i in tokenized[0:5]:
                words = nltk.word_tokenize(i)
                tagged = nltk.pos_tag(words)
    
                chunkGram = r"""Chunk: {<.*>+}
                                        }<VB.?|IN|DT|TO>+{"""
    
                chunkParser = nltk.RegexpParser(chunkGram)
                chunked = chunkParser.parse(tagged)
    
                chunked.draw()
    
        except Exception as e:
            print(str(e))
    
    process_content()
          
    

     

    百度文库参考

    http://wenku.baidu.com/link?url=YIrqeVS8a1zO_H0t66kj1AbUUReLUJIqId5So5Szk0JJAupyg_m2U_WqxEHqAHDy9DfmoAAPu0CdNFf-rePBsTHkx-0WDpoYTH1txFDKQxC

    chinking可用于提取句子主干,去除不需要的修饰语

    Chinking with NLTK




    You may find that, after a lot of chunking, you have some words in your chunk you still do not want, but you have no idea how to get rid of them by chunking. You may find that chinking is your solution.

    Chinking is a lot like chunking, it is basically a way for you to remove a chunk from a chunk. The chunk that you remove from your chunk is your chink.

    The code is very similar, you just denote the chink, after the chunk, with }{ instead of the chunk's {}.

    import nltk
    from nltk.corpus import state_union
    from nltk.tokenize import PunktSentenceTokenizer
    
    train_text = state_union.raw("2005-GWBush.txt")
    sample_text = state_union.raw("2006-GWBush.txt")
    
    custom_sent_tokenizer = PunktSentenceTokenizer(train_text)
    
    tokenized = custom_sent_tokenizer.tokenize(sample_text)
    
    def process_content():
        try:
            for i in tokenized[5:]:
                words = nltk.word_tokenize(i)
                tagged = nltk.pos_tag(words)
    
                chunkGram = r"""Chunk: {<.*>+}
                                        }<VB.?|IN|DT|TO>+{"""
    
                chunkParser = nltk.RegexpParser(chunkGram)
                chunked = chunkParser.parse(tagged)
    
                chunked.draw()
    
        except Exception as e:
            print(str(e))
    
    process_content()

    With this, you are given something like:

    Now, the main difference here is:

    }<VB.?|IN|DT|TO>+{

    此句表示,我们移除一个或多个动词,介词,定冠词,或to

    This means we're removing from the chink one or more verbs, prepositions, determiners, or the word 'to'.

    Now that we've learned how to do some custom forms of chunking, and chinking, let's discuss a built-in form of chunking that comes with NLTK, and that is named entity recognition.

  • 相关阅读:
    人工智能深度学习:TensorFlow2.0如何保持和读取模型?
    人工智能深度学习:TensorFlow2.0实现回归问题
    InnoDB存储引擎中的锁
    Spring源码系列8
    Spring源码系列7
    Spring源码系列6
    Spring源码系列5
    Spring源码系列4
    Spring源码系列3
    Spring源码系列2
  • 原文地址:https://www.cnblogs.com/webRobot/p/6080138.html
Copyright © 2011-2022 走看看