zoukankan      html  css  js  c++  java
  • 自然语言19.1_Lemmatizing with NLTK(单词变体还原)

     python金融风控评分卡模型和数据分析微专业(博主亲自录制视频):http://dwz.date/b9vv

    Lemmatizing with NLTK

    # -*- coding: utf-8 -*-
    """
    Spyder Editor
    
    author 231469242@qq.com
    微信公众号:pythonEducation """ import nltk from nltk.stem import WordNetLemmatizer lemmatizer=WordNetLemmatizer() #如果不提供第二个参数,单词变体还原为名词 #pythonly 无法还原,说明精确度仍然达不到100% print(lemmatizer.lemmatize("cats")) print(lemmatizer.lemmatize("cacti")) print(lemmatizer.lemmatize("geese")) print(lemmatizer.lemmatize("rocks")) print(lemmatizer.lemmatize("pythonly")) print(lemmatizer.lemmatize("better", pos="a")) print(lemmatizer.lemmatize("best", pos="a")) print(lemmatizer.lemmatize("run")) print(lemmatizer.lemmatize("run",'v')) ''' cat cactus goose rock pythonly good best run run '''




    A very similar operation to stemming is called lemmatizing. The major difference between these is, as you saw earlier, stemming can often create non-existent words, whereas lemmas are actual words.

    So, your root stem, meaning the word you end up with, is not something you can just look up in a dictionary, but you can look up a lemma.

    Some times you will wind up with a very similar word, but sometimes, you will wind up with a completely different word. Let's see some examples.

    from nltk.stem import WordNetLemmatizer
    
    lemmatizer = WordNetLemmatizer()
    
    print(lemmatizer.lemmatize("cats"))
    print(lemmatizer.lemmatize("cacti"))
    print(lemmatizer.lemmatize("geese"))
    print(lemmatizer.lemmatize("rocks"))
    print(lemmatizer.lemmatize("python"))
    print(lemmatizer.lemmatize("better", pos="a"))
    print(lemmatizer.lemmatize("best", pos="a"))
    print(lemmatizer.lemmatize("run"))
    print(lemmatizer.lemmatize("run",'v'))

    Here, we've got a bunch of examples of the lemma for the words that we use. The only major thing to note is that lemmatize takes a part of speech parameter, "pos." If not supplied, the default is "noun." This means that an attempt will be made to find the closest noun, which can create trouble for you. Keep this in mind if you use lemmatizing!

    In the next tutorial, we're going to dive into the NTLK corpus that came with the module, looking at all of the awesome documents they have waiting for us there.

     

     python机器学习生物信息学系列课(博主录制)http://dwz.date/b9vw

    欢迎关注博主主页,学习python视频资源

     
  • 相关阅读:
    uni-app中动态设置头部颜色及字体
    微信小程序中 showToast 真机下一闪而过相关问题
    uni-app踩坑记
    配置git提交规范跟规范校验(ESLint、commitLint、husky)
    vscode中配置git终端
    vue插槽学习之——作用域插槽
    布局小技巧集合之——动态列表固定列数固定间距自适应布局
    写入自定义 ASP.NET Core 中间件
    [转]NET实现RSA AES DES 字符串 加密解密以及SHA1 MD5加密
    JavaScript事件循环机制
  • 原文地址:https://www.cnblogs.com/webRobot/p/6080170.html
Copyright © 2011-2022 走看看