zoukankan      html  css  js  c++  java
  • 统计学_样本量估计_python代码实现

     

     

     

    根据power,effect size,a,决定样本量

    # -*- coding: utf-8 -*-
    """
    sample size VS effect size VS power
    Created on Fri Apr 28 11:00:22 2017
    
    @author: toby
    """
    
    from statsmodels.stats import power
    
    nobs = power.tt_ind_solve_power(effect_size = 0.5, alpha =0.05, power=0.8 )
    
    print (nobs)
    '''
    63.76561177540974
    '''
    
    effect_size = power.tt_ind_solve_power(alpha =0.05, power=0.8, nobs1=25 )
    print(effect_size)
    '''
    0.8087077886680407
    '''
    

    t独立检验中,敏感性(power功效)越高,要求的样本量越大,effect size效应量0.5表示中等效应,如果效应太低,即使显著性<0.05,实验无意义

    更好的样本计算脚本来自GitHub

    https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/sampleSize

    # -*- coding: utf-8 -*-
    """
    Created on Fri Apr 28 11:12:01 2017
    
    @author: toby
    """
    
    '''Calculate the sample size for experiments, for normally distributed groups, for:
    - Experiments with one single group
    - Comparing two groups
    '''
    
    # Copyright(c) 2015, Thomas Haslwanter. All rights reserved, under the CC BY-SA 4.0 International License
    
    # Import standard packages
    import numpy as np
    
    # additional packages
    from scipy.stats import norm
    
    def sampleSize_oneGroup(d, alpha=0.05, beta=0.2, sigma=1):
        '''Sample size for a single group. The formula corresponds to Eq 6.2 in the book.'''
        
        n = np.round((norm.ppf(1-alpha/2.) + norm.ppf(1-beta))**2 * sigma**2 / d**2)
        
        print(('In order to detect a change of {0} in a group with an SD of {1},'.format(d, sigma)))
        print(('with significance {0} and test-power {1}, you need at least {2:d} subjects.'.format(alpha, 100*(1-beta), int(n))))
        
        return n
    
    def sampleSize_twoGroups(D, alpha=0.05, beta=0.2, sigma1=1, sigma2=1):
        '''Sample size for two groups. The formula corresponds to Eq 6.4 in the book.'''
        
        n = np.round((norm.ppf(1-alpha/2.) + norm.ppf(1-beta))**2 * (sigma1**2 + sigma2**2) / D**2)
        
        print(('In order to detect a change of {0} between groups with an SD of {1} and {2},'.format(D, sigma1, sigma2)))
        print(('with significance {0} and test-power {1}, you need in each group at least {2:d} subjects.'.format(alpha, 100*(1-beta), int(n))))
        
        return n
    
    if __name__ == '__main__':
        sampleSize_oneGroup(0.5)
        print('
    ')
        sampleSize_twoGroups(0.4, sigma1=0.6, sigma2=0.6)
    

     

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

     

     

  • 相关阅读:
    nginx源代码分析--监听套接字的创建 套接字的监听 HTTP请求创建连接
    JSP中Session的使用
    令人作呕的OpenSSL
    bottle的几个小坑
    UVA 11997
    Rational Rose 2007 &amp;Rational Rose 2003 下载及破解方法和汉化文件下载
    MyEclipse下XFire开发Webservice实例
    OpenTSDB设计解读
    Spring整合Hibernate的步骤
    linux服务之audit
  • 原文地址:https://www.cnblogs.com/webRobot/p/6780747.html
Copyright © 2011-2022 走看看