zoukankan      html  css  js  c++  java
  • sklearn6_生成分类数据

     python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

    生成2类数据

    n_features :特征个数= n_informative() + n_redundant + n_repeated
    n_informative:多信息特征的个数
    n_redundant:冗余信息,informative特征的随机线性组合
    n_repeated :重复信息,随机提取n_informative和n_redundant 特征
    n_classes:分类类别
    n_clusters_per_class :某一个类别是由几个cluster构成的

    from sklearn import preprocessing
    import numpy as np
    #生成分类数据的分类器
    from sklearn.datasets.samples_generator import make_classification
    #自动生成训练数据和测试数据
    from sklearn.cross_validation import train_test_split
    #导入支持向量模型
    from sklearn.svm import SVC
    import matplotlib.pyplot as plt
    
    x,y=make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,random_state=22,n_clusters_per_class=1,scale=100)
    
    #c=y表示color为黄色
    plt.scatter(x[:,0],x[:,1],c=y)
    plt.show()
    

      

    生成4类数据

    # -*- coding: utf-8 -*-
    """
    Created on Sun Jan  7 15:54:56 2018
    
    @author: Administrator
    """
    
    from sklearn import preprocessing
    import numpy as np
    #生成分类数据的分类器
    from sklearn.datasets.samples_generator import make_classification
    #自动生成训练数据和测试数据
    from sklearn.cross_validation import train_test_split
    #导入支持向量模型
    from sklearn.svm import SVC
    import matplotlib.pyplot as plt
    
    #n_classes=4生成4类数据
    x,y=make_classification(n_classes=4,n_samples=300,n_features=2,n_redundant=0,n_informative=2,random_state=22,n_clusters_per_class=1,scale=100)
    
    #c=y表示color为黄色
    plt.scatter(x[:,0],x[:,1],c=y)
    plt.show()
    

      

    # -*- coding: utf-8 -*-
    """
    Created on Sun Jan  7 16:51:38 2018
    
    @author: Administrator
    """
    
    import matplotlib.pyplot as plt  
      
    from sklearn.datasets import make_classification  
    from sklearn.datasets import make_blobs  
    from sklearn.datasets import make_gaussian_quantiles  
    from sklearn.datasets import make_hastie_10_2  
      
    plt.figure(figsize=(8, 8))  
    plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)  
      
    plt.subplot(421)  
    plt.title("One informative feature, one cluster per class", fontsize='small')  
    X1, Y1 = make_classification(n_samples=1000,n_features=2, n_redundant=0, n_informative=1,  
                                 n_clusters_per_class=1)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
      
    plt.subplot(422)  
    plt.title("Two informative features, one cluster per class", fontsize='small')  
    X1, Y1 = make_classification(n_samples=1000,n_features=2, n_redundant=0, n_informative=2,  
                                 n_clusters_per_class=1)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
      
    plt.subplot(423)  
    plt.title("Two informative features, two clusters per class", fontsize='small')  
    X2, Y2 = make_classification(n_samples=1000,n_features=2, n_redundant=0, n_informative=2)  
    plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2)  
      
      
    plt.subplot(424)  
    plt.title("Multi-class, two informative features, one cluster",  
              fontsize='small')  
    X1, Y1 = make_classification(n_samples=1000,n_features=2, n_redundant=0, n_informative=2,  
                                 n_clusters_per_class=1, n_classes=3)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
      
    plt.subplot(425)  
    plt.title("Three blobs", fontsize='small')  
    X1, Y1 = make_blobs(n_samples=1000,n_features=2, centers=3)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
      
    plt.subplot(426)  
    plt.title("Gaussian divided into four quantiles", fontsize='small')  
    X1, Y1 = make_gaussian_quantiles(n_samples=1000,n_features=2, n_classes=4)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
      
    plt.subplot(427)  
    plt.title("hastie data ", fontsize='small')  
    X1, Y1 = make_hastie_10_2(n_samples=1000)  
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
    plt.show()  
    

    # -*- coding: utf-8 -*-
    """
    Created on Sun Jan  7 16:29:35 2018
    
    @author: Administrator
    """
    
    import matplotlib.pyplot as plt  
      
    from sklearn.datasets import make_classification  
    from sklearn.datasets import make_blobs  
    from sklearn.datasets import make_gaussian_quantiles  
    from sklearn.datasets import make_hastie_10_2  
    
    #画布的大小为长20cm高20cm
    plt.figure(figsize=(15,10))
    
    #标题,fontsize为标题字体大小
    plt.title("Gaussian divided into six quantiles", fontsize='large')  
    X1, Y1 = make_gaussian_quantiles(n_samples=1000,n_features=2, n_classes=6)  
    
    #绘制点,X1[:, 0]为点的x列表值, X1[:, 1]为点的y列表值, c=Y1表示颜色,c为color缩写
    plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)  
    

      

    # -*- coding: utf-8 -*-
    """
    Created on Sun Jan  7 16:51:38 2018
    
    @author: Administrator
    """
    
      
    from sklearn.datasets import make_circles  
    from sklearn.datasets import make_moons  
    import matplotlib.pyplot as plt  
    import numpy as np  
      
    #画布的大小为长20cm高20cm
    plt.figure(figsize=(15,10))
    
    fig=plt.figure(1)  
    x1,y1=make_circles(n_samples=1000,factor=0.5,noise=0.1)  
    plt.subplot(121)  
    plt.title('make_circles function example')  
    plt.scatter(x1[:,0],x1[:,1],marker='o',c=y1)  
      
    plt.subplot(122)  
    x1,y1=make_moons(n_samples=1000,noise=0.1)  
    plt.title('make_moons function example')  
    plt.scatter(x1[:,0],x1[:,1],marker='o',c=y1)  
    plt.show()  
    

      

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)


     
  • 相关阅读:
    国内CAD二次开发关注度比较
    用Java做UG NX 二次开发
    【纪念帖】开通我的第二技术博客
    UG NXOpen for C++ (NX6) CHM帮助文件
    UG CAM 二次开发 UF_SETUP_generate_program详解
    解决QWidget: Must construct a QApplication before a QPaintDevice
    建模语言: Not UML but Generative Modeling Language
    从32bit迁移到64bit
    从32bit迁移到64bit[3]
    [Revisit.SolidMCP] 更广泛使用pimpl idiom
  • 原文地址:https://www.cnblogs.com/webRobot/p/8228412.html
Copyright © 2011-2022 走看看