zoukankan      html  css  js  c++  java
  • sklearn-标准化标签LabelEncoder

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

    sklearn.preprocessing.LabelEncoder():标准化标签

    standardScaler==features with a mean=0 and variance=1
    minMaxScaler==features in a 0 to 1 range
    normalizer==feature vector to a euclidean length=1
    normalization
    bring the values of each feature vector on a common scale
    L1-least absolute deviations-sum of absolute values(on each row)=1;it is insensitive to outliers
    L2-Least squares-sum of squares(on each row)=1;takes outliers in consideration during traing
    # -*- coding: utf-8 -*-
    """
    Created on Sat Apr 14 09:09:41 2018
    
    @author:Toby 
    standardScaler==features with a mean=0 and variance=1
    minMaxScaler==features in a 0 to 1 range
    normalizer==feature vector to a euclidean length=1
    
    normalization
    bring the values of each feature vector on a common scale
    L1-least absolute deviations-sum of absolute values(on each row)=1;it is insensitive to outliers
    L2-Least squares-sum of squares(on each row)=1;takes outliers in consideration during traing
    
    """
    
    from sklearn import preprocessing
    import numpy as np
    
    data=np.array([[2.2,5.9,-1.8],[5.4,-3.2,-5.1],[-1.9,4.2,3.2]])
    bindata=preprocessing.Binarizer(threshold=1.5).transform(data)
    print('Binarized data:',bindata)
    
    #mean removal
    print('Mean(before)=',data.mean(axis=0))
    print('standard deviation(before)=',data.std(axis=0))
    
    #features with a mean=0 and variance=1
    scaled_data=preprocessing.scale(data)
    print('Mean(before)=',scaled_data.mean(axis=0))
    print('standard deviation(before)=',scaled_data.std(axis=0))
    print('scaled_data:',scaled_data)
    '''
    scaled_data: [[ 0.10040991  0.91127074 -0.16607709]
     [ 1.171449   -1.39221918 -1.1332319 ]
     [-1.27185891  0.48094844  1.29930899]]
    '''
    
    #features in a 0 to 1 range
    minmax_scaler=preprocessing.MinMaxScaler(feature_range=(0,1))
    data_minmax=minmax_scaler.fit_transform(data)
    print('MinMaxScaler applied on the data:',data_minmax)
    '''
    MinMaxScaler applied on the data: [[ 0.56164384  1.          0.39759036]
     [ 1.          0.          0.        ]
     [ 0.          0.81318681  1.        ]]
    '''
    
    data_l1=preprocessing.normalize(data,norm='l1')
    data_l2=preprocessing.normalize(data,norm='l2')
    print('l1-normalized data:',data_l1)
    '''
    [[ 0.22222222  0.5959596  -0.18181818]
     [ 0.39416058 -0.23357664 -0.37226277]
     [-0.20430108  0.4516129   0.34408602]]
    '''
    print('l2-normalized data:',data_l2)
    '''
    [[ 0.3359268   0.90089461 -0.2748492 ]
     [ 0.6676851  -0.39566524 -0.63059148]
     [-0.33858465  0.74845029  0.57024784]]
    '''
    

      

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)


    QQ:231469242

  • 相关阅读:
    委托理解
    WebForm与MVC模式优缺点
    关系型数据库与NOSQL
    抽象类与接口
    Asp.net中的状态保持方案
    数据库[约束]笔记
    xml文件操作
    String、Path、File、Directroy 常用方法总结
    面向对象5个基本设计原则
    面向对象分析与设计
  • 原文地址:https://www.cnblogs.com/webRobot/p/8830987.html
Copyright © 2011-2022 走看看