zoukankan      html  css  js  c++  java
  • poj3261Milk Patterns 后缀数组

    题目地址:http://poj.org/problem?id=3261

    题目:

    Description

    Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can't predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.

    To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤ N ≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

    Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least K times.

    Input

    Line 1: Two space-separated integers: N and K 
    Lines 2..N+1: N integers, one per line, the quality of the milk on day i appears on the ith line.

    Output

    Line 1: One integer, the length of the longest pattern which occurs at least K times

    Sample Input

    8 2
    1
    2
    3
    2
    3
    2
    3
    1

    Sample Output

    4

    思路:直接上后缀数组模板,跑个height数组。不过此时要注意两点:
      1.每个数的范围在0~1e6,所以要先离散化。不过此题数据较水,你可以不需要离散化,直接把字符最大值设为1e5就可以a了。不过直接开个1e6的数组应该也没事吧(没试过,待证实)
      2.这个数可能是0,所以要么把每个读取的数先+1,或者把ss[n]设为-1;
      然后二分答案,对height数组分组看符不符合答案。
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    const int N = 200000+9;
    int wa[N], wb[N], ws[N], wv[N];
    int rank[N], height[N];
    int sa[N],ss[N],n,k;
    bool cmp(int r[], int a, int b, int l) {
        return r[a] == r[b] && r[a+l] == r[b+l];
    }
    
    void da(int r[], int sa[], int n, int m) {
        int i, j, p, *x = wa, *y = wb;
        for (i = 0; i < m; ++i) ws[i] = 0;
        for (i = 0; i < n; ++i) ws[x[i]=r[i]]++;
        for (i = 1; i < m; ++i) ws[i] += ws[i-1];
        for (i = n-1; i >= 0; --i) sa[--ws[x[i]]] = i;
        for (j = 1, p = 1; p < n; j *= 2, m = p) {
            for (p = 0, i = n - j; i < n; ++i) y[p++] = i;
            for (i = 0; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
            for (i = 0; i < n; ++i) wv[i] = x[y[i]];
            for (i = 0; i < m; ++i) ws[i] = 0;
            for (i = 0; i < n; ++i) ws[wv[i]]++;
            for (i = 1; i < m; ++i) ws[i] += ws[i-1];
            for (i = n-1; i >= 0; --i) sa[--ws[wv[i]]] = y[i];
            for (swap(x, y), p = 1, x[sa[0]] = 0, i = 1; i < n; ++i)
                x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;
        }
    }
    
    void calheight(int r[], int sa[], int n) {
        int i, j, k = 0;
        for (i = 1; i <= n; ++i) rank[sa[i]] = i;
        for (i = 0; i < n; height[rank[i++]] = k)
            for (k?k--:0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k++);
    }
    int check(int len)
    {
        int i=2,cnt=0;
        while(1)
        {
            while(i<=n && height[i]>=len)
                cnt++,i++;
            if(cnt+1>=k)return 1;
            if(i>=n)return 0;
            while(i <=n &&height[i]<len)
                i++;
            cnt=0;
        }
    }
    
    int main()
    {
        scanf("%d%d",&n,&k);
        for(int i=0;i<n;i++)
            scanf("%d",&ss[i]),ss[i]++;
        ss[n]=0;
        da(ss,sa,n+1,N);
        calheight(ss,sa,n);
        int l=1,r=n,ans=1,mid;
        while(l<=r)
        {
            mid=(l+r)/2;
            if(check(mid))
                l=mid+1,ans=mid;
            else
                r=mid-1;
        }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    【开卷故意】JAVA正則表達式模版
    CSS控制显示超出部分,用省略号显示
    1星《微信软文营销实战技巧》:标题党,作者没有实战经验
    3星|《强势谈判》:有趣的绑匪谈判故事
    3星|《赢者的诅咒》:新晋诺奖得主92年作品,博弈论在拍卖、薪酬、股市、彩票、赛马、汇市等领域的应用,偏专业
    4星|《OKR实践指南》:老司机经验谈
    3星|《华为管理变革》:华为有史以来为了变革而开展的项目的概述。
    3星|《信号》:全球经济的坏消息
    2星|《麦肯锡图表工作法》:用图表做商业分析的入门演示
    2星|《麦肯锡与贝恩的团队管理智慧》:从投入、产出两个维度把下属分到4个象限
  • 原文地址:https://www.cnblogs.com/weeping/p/5751422.html
Copyright © 2011-2022 走看看