zoukankan      html  css  js  c++  java
  • 再来一道测半平面交模板题 Poj1279 Art Gallery

    地址:http://poj.org/problem?id=1279

    题目:

                            Art Gallery
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7329   Accepted: 2938

    Description

    The art galleries of the new and very futuristic building of the Center for Balkan Cooperation have the form of polygons (not necessarily convex). When a big exhibition is organized, watching over all of the pictures is a big security concern. Your task is that for a given gallery to write a program which finds the surface of the area of the floor, from which each point on the walls of the gallery is visible. On the figure 1. a map of a gallery is given in some co-ordinate system. The area wanted is shaded on the figure 2. 

    Input

    The number of tasks T that your program have to solve will be on the first row of the input file. Input data for each task start with an integer N, 5 <= N <= 1500. Each of the next N rows of the input will contain the co-ordinates of a vertex of the polygon ? two integers that fit in 16-bit integer type, separated by a single space. Following the row with the co-ordinates of the last vertex for the task comes the line with the number of vertices for the next test and so on.

    Output

    For each test you must write on one line the required surface - a number with exactly two digits after the decimal point (the number should be rounded to the second digit after the decimal point).

    Sample Input

    1
    7
    0 0
    4 4
    4 7
    9 7
    13 -1
    8 -6
    4 -4

    Sample Output

    80.00
    思路:没什么好说的,和前面几题一样都是用来测模板的题,不过还是wa了两次,因为把题目看成是要四舍五入到第二位小数(盲人acmer)
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cmath>
      4 #include <algorithm>
      5 
      6 
      7 using namespace std;
      8 const double eps = 1e-8;
      9 //
     10 class Point
     11 {
     12 public:
     13     double x, y;
     14 
     15     Point(){}
     16     Point(double x, double y):x(x),y(y){}
     17 
     18     bool operator < (const Point &_se) const
     19     {
     20         return x<_se.x || (x==_se.x && y<_se.y);
     21     }
     22     /*******判断ta与tb的大小关系*******/
     23     static int sgn(double ta,double tb)
     24     {
     25         if(fabs(ta-tb)<eps)return 0;
     26         if(ta<tb)   return -1;
     27         return 1;
     28     }
     29     static double xmult(const Point &po, const Point &ps, const Point &pe)
     30     {
     31         return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
     32     }
     33     friend Point operator + (const Point &_st,const Point &_se)
     34     {
     35         return Point(_st.x + _se.x, _st.y + _se.y);
     36     }
     37     friend Point operator - (const Point &_st,const Point &_se)
     38     {
     39         return Point(_st.x - _se.x, _st.y - _se.y);
     40     }
     41     //点位置相同(double类型)
     42     bool operator == (const Point &_off) const
     43     {
     44         return  Point::sgn(x, _off.x) == 0 && Point::sgn(y, _off.y) == 0;
     45     }
     46     //点位置不同(double类型)
     47     bool operator != (const Point &_Off) const
     48     {
     49         return ((*this) == _Off) == false;
     50     }
     51     //两点间距离的平方
     52     static double dis2(const Point &_st,const Point &_se)
     53     {
     54         return (_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y);
     55     }
     56     //两点间距离
     57     static double dis(const Point &_st, const Point &_se)
     58     {
     59         return sqrt((_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y));
     60     }
     61 };
     62 //两点表示的向量
     63 class Line
     64 {
     65 public:
     66     Point s, e;//两点表示,起点[s],终点[e]
     67     double a, b, c;//一般式,ax+by+c=0
     68 
     69     Line(){}
     70     Line(const Point &s, const Point &e):s(s),e(e){}
     71     Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){}
     72 
     73     //向量与点的叉乘,参数:点[_Off]
     74     //[点相对向量位置判断]
     75     double operator /(const Point &_Off) const
     76     {
     77         return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y);
     78     }
     79     //向量与向量的叉乘,参数:向量[_Off]
     80     friend double operator /(const Line &_st,const Line &_se)
     81     {
     82         return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
     83     }
     84     friend double operator *(const Line &_st,const Line &_se)
     85     {
     86         return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
     87     }
     88     //从两点表示转换为一般表示
     89     //a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
     90     bool pton()
     91     {
     92         a = e.y - s.y;
     93         b = s.x - e.x;
     94         c = e.x * s.y - e.y * s.x;
     95         return true;
     96     }
     97 
     98     //-----------点和直线(向量)-----------
     99     //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
    100     //参数:点[_Off],向量[_Ori]
    101     friend bool operator<(const Point &_Off, const Line &_Ori)
    102     {
    103         return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
    104             < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
    105     }
    106 
    107     //点在直线上,参数:点[_Off]
    108     bool lhas(const Point &_Off) const
    109     {
    110         return Point::sgn((*this) / _Off, 0) == 0;
    111     }
    112     //点在线段上,参数:点[_Off]
    113     bool shas(const Point &_Off) const
    114     {
    115         return lhas(_Off)
    116             && Point::sgn(_Off.x - min(s.x, e.x), 0) > 0 && Point::sgn(_Off.x - max(s.x, e.x), 0) < 0
    117             && Point::sgn(_Off.y - min(s.y, e.y), 0) > 0 && Point::sgn(_Off.y - max(s.y, e.y), 0) < 0;
    118     }
    119 
    120     //点到直线/线段的距离
    121     //参数: 点[_Off], 是否是线段[isSegment](默认为直线)
    122     double dis(const Point &_Off, bool isSegment = false)
    123     {
    124         ///化为一般式
    125         pton();
    126 
    127         //到直线垂足的距离
    128         double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
    129 
    130         //如果是线段判断垂足
    131         if(isSegment)
    132         {
    133             double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
    134             double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
    135             double xb = max(s.x, e.x);
    136             double yb = max(s.y, e.y);
    137             double xs = s.x + e.x - xb;
    138             double ys = s.y + e.y - yb;
    139             if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
    140                 td = min(Point::dis(_Off,s), Point::dis(_Off,e));
    141         }
    142 
    143         return fabs(td);
    144     }
    145 
    146     //关于直线对称的点
    147     Point mirror(const Point &_Off) const
    148     {
    149         ///注意先转为一般式
    150         Point ret;
    151         double d = a * a + b * b;
    152         ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
    153         ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
    154         return ret;
    155     }
    156     //计算两点的中垂线
    157     static Line ppline(const Point &_a, const Point &_b)
    158     {
    159         Line ret;
    160         ret.s.x = (_a.x + _b.x) / 2;
    161         ret.s.y = (_a.y + _b.y) / 2;
    162         //一般式
    163         ret.a = _b.x - _a.x;
    164         ret.b = _b.y - _a.y;
    165         ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
    166         //两点式
    167         if(std::fabs(ret.a) > eps)
    168         {
    169             ret.e.y = 0.0;
    170             ret.e.x = - ret.c / ret.a;
    171             if(ret.e == ret. s)
    172             {
    173                 ret.e.y = 1e10;
    174                 ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
    175             }
    176         }
    177         else
    178         {
    179             ret.e.x = 0.0;
    180             ret.e.y = - ret.c / ret.b;
    181             if(ret.e == ret. s)
    182             {
    183                 ret.e.x = 1e10;
    184                 ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
    185             }
    186         }
    187         return ret;
    188     }
    189 
    190     //------------直线和直线(向量)-------------
    191     //直线重合,参数:直线向量[_st],[_se]
    192     static bool equal(const Line &_st, const Line &_se)
    193     {
    194         return _st.lhas(_se.e) && _se.lhas(_se.s);
    195     }
    196     //直线平行,参数:直线向量[_st],[_se]
    197     static bool parallel(const Line &_st,const Line &_se)
    198     {
    199         return Point::sgn(_st / _se, 0) == 0;
    200     }
    201     //两直线(线段)交点,参数:直线向量[_st],[_se],交点
    202     //返回-1代表平行,0代表重合,1代表相交
    203     static bool crossLPt(const Line &_st,const Line &_se,Point &ret)
    204     {
    205         if(Line::parallel(_st,_se))
    206         {
    207             if(Line::equal(_st,_se)) return 0;
    208             return -1;
    209         }
    210         ret = _st.s;
    211         double t = (Line(_st.s,_se.s)/_se)/(_st/_se);
    212         ret.x += (_st.e.x - _st.s.x) * t;
    213         ret.y += (_st.e.y - _st.s.y) * t;
    214         return 1;
    215     }
    216     //------------线段和直线(向量)----------
    217     //线段和直线交
    218     //参数:直线[_st],线段[_se]
    219     friend bool crossSL(const Line &_st,const Line &_se)
    220     {
    221         return Point::sgn((_st / _se.s) * (_st / _se.e) ,0) <= 0;
    222     }
    223 
    224     //------------线段和线段(向量)----------
    225     //判断线段是否相交(注意添加eps),参数:线段[_st],线段[_se]
    226     static bool isCrossSS(const Line &_st,const Line &_se)
    227     {
    228         //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
    229         //2.跨立试验(等于0时端点重合)
    230         return
    231             max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
    232             max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
    233             max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
    234             max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
    235             Point::sgn((_st / Line(_st.s, _se.s)) * (_st / Line(_st.s, _se.e)), 0) <= 0 &&
    236             Point::sgn((_se / Line(_se.s, _st.s)) * (_se / Line(_se.s, _st.e)), 0) <= 0;
    237     }
    238 };
    239 class Polygon
    240 {
    241 public:
    242     const static int maxpn = 2000;
    243     Point pt[maxpn];//点(顺时针或逆时针)
    244     int n;//点的个数
    245 
    246     Point& operator[](int _p)
    247     {
    248         return pt[_p];
    249     }
    250 
    251     //求多边形面积,多边形内点必须顺时针或逆时针
    252     double area() const
    253     {
    254         double ans = 0.0;
    255         for(int i = 0; i < n; i ++)
    256         {
    257             int nt = (i + 1) % n;
    258             ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
    259         }
    260         return fabs(ans / 2.0);
    261     }
    262     //求多边形重心,多边形内点必须顺时针或逆时针
    263     Point gravity() const
    264     {
    265         Point ans;
    266         ans.x = ans.y = 0.0;
    267         double area = 0.0;
    268         for(int i = 0; i < n; i ++)
    269         {
    270             int nt = (i + 1) % n;
    271             double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
    272             area += tp;
    273             ans.x += tp * (pt[i].x + pt[nt].x);
    274             ans.y += tp * (pt[i].y + pt[nt].y);
    275         }
    276         ans.x /= 3 * area;
    277         ans.y /= 3 * area;
    278         return ans;
    279     }
    280     //判断点在凸多边形内,参数:点[_Off]
    281     bool chas(const Point &_Off) const
    282     {
    283         double tp = 0, np;
    284         for(int i = 0; i < n; i ++)
    285         {
    286             np = Line(pt[i], pt[(i + 1) % n]) / _Off;
    287             if(tp * np < -eps)
    288                 return false;
    289             tp = (fabs(np) > eps)?np: tp;
    290         }
    291         return true;
    292     }
    293     //判断点是否在任意多边形内[射线法],O(n)
    294     bool ahas(const Point &_Off) const
    295     {
    296         int ret = 0;
    297         double infv = 1e-10;//坐标系最大范围
    298         Line l = Line(_Off, Point( -infv ,_Off.y));
    299         for(int i = 0; i < n; i ++)
    300         {
    301             Line ln = Line(pt[i], pt[(i + 1) % n]);
    302             if(fabs(ln.s.y - ln.e.y) > eps)
    303             {
    304                 Point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;
    305                 if(fabs(tp.y - _Off.y) < eps && tp.x < _Off.x + eps)
    306                     ret ++;
    307             }
    308             else if(Line::isCrossSS(ln,l))
    309                 ret ++;
    310         }
    311         return (ret % 2 == 1);
    312     }
    313     //凸多边形被直线分割,参数:直线[_Off]
    314     Polygon split(Line _Off)
    315     {
    316         //注意确保多边形能被分割
    317         Polygon ret;
    318         Point spt[2];
    319         double tp = 0.0, np;
    320         bool flag = true;
    321         int i, pn = 0, spn = 0;
    322         for(i = 0; i < n; i ++)
    323         {
    324             if(flag)
    325                 pt[pn ++] = pt[i];
    326             else
    327                 ret.pt[ret.n ++] = pt[i];
    328             np = _Off / pt[(i + 1) % n];
    329             if(tp * np < -eps)
    330             {
    331                 flag = !flag;
    332                 Line::crossLPt(_Off,Line(pt[i], pt[(i + 1) % n]),spt[spn++]);
    333             }
    334             tp = (fabs(np) > eps)?np: tp;
    335         }
    336         ret.pt[ret.n ++] = spt[0];
    337         ret.pt[ret.n ++] = spt[1];
    338         n = pn;
    339         return ret;
    340     }
    341 
    342 
    343     /** 卷包裹法求点集凸包,_p为输入点集,_n为点的数量 **/
    344     void ConvexClosure(Point _p[],int _n)
    345     {
    346         sort(_p,_p+_n);
    347         n=0;
    348         for(int i=0;i<_n;i++)
    349         {
    350             while(n>1&&Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<=0)
    351                 n--;
    352             pt[n++]=_p[i];
    353         }
    354         int _key=n;
    355         for(int i=_n-2;i>=0;i--)
    356         {
    357             while(n>_key&&Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<=0)
    358                 n--;
    359             pt[n++]=_p[i];
    360         }
    361         if(n>1)   n--;//除去重复的点,该点已是凸包凸包起点
    362     }
    363 //    /****** 寻找凸包的graham 扫描法********************/
    364 //    /****** _p为输入的点集,_n为点的数量****************/
    365 //    /**使用时需把gmp函数放在类外,并且看情况修改pt[0]**/
    366 //    bool gcmp(const Point &ta,const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
    367 //    {
    368 //        double tmp=Line(pt[0],ta)/Line(pt[0],tb);
    369 //        if(Point::sgn(tmp,0)==0)
    370 //            return Point::dis(pt[0],ta)<Point::dis(pt[0],tb);
    371 //        else if(tmp>0)
    372 //            return 1;
    373 //        return 0;
    374 //    }
    375 //    void graham(Point _p[],int _n)
    376 //    {
    377 //        int cur=0;
    378 //        for(int i=1;i<_n;i++)
    379 //            if(Point::sgn(_p[cur].y,_p[i].y)>0 || (Point::sgn(_p[cur].y,_p[i].y)==0 && Point::sgn(_p[cur].x,_p[i].x)>0))
    380 //                cur=i;
    381 //        swap(_p[cur],_p[0]);
    382 //        n=0,pt[n++]=_p[0];
    383 //        if(_n==1)   return;
    384 //        sort(_p+1,_p+_n,Polygon::gcmp);
    385 //        pt[n++]=_p[1],pt[n++]=_p[2];
    386 //        for(int i=3;i<_n;i++)
    387 //        {
    388 //            while(Point::sgn(Line(pt[n-2],pt[n-1])/Line(pt[n-2],_p[i]),0)<0)
    389 //                n--;
    390 //            pt[n++]=_p[i];
    391 //        }
    392 //    }
    393     //凸包旋转卡壳(注意点必须顺时针或逆时针排列)
    394     //返回值凸包直径的平方(最远两点距离的平方)
    395     double rotating_calipers()
    396     {
    397         int i = 1;
    398         double ret = 0.0;
    399         pt[n] = pt[0];
    400         for(int j = 0; j < n; j ++)
    401         {
    402             while(fabs(Point::xmult(pt[i+1],pt[j], pt[j + 1])) > fabs(Point::xmult(pt[i],pt[j], pt[j + 1])) + eps)
    403                 i = (i + 1) % n;
    404             //pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
    405             ret = (ret, max(Point::dis(pt[i],pt[j]), Point::dis(pt[i + 1],pt[j + 1])));
    406         }
    407         return ret;
    408     }
    409 
    410     //凸包旋转卡壳(注意点必须逆时针排列)
    411     //返回值两凸包的最短距离
    412     double rotating_calipers(Polygon &_Off)
    413     {
    414         int i = 0;
    415         double ret = 1e10;//inf
    416         pt[n] = pt[0];
    417         _Off.pt[_Off.n] = _Off.pt[0];
    418         //注意凸包必须逆时针排列且pt[0]是左下角点的位置
    419         while(_Off.pt[i + 1].y > _Off.pt[i].y)
    420             i = (i + 1) % _Off.n;
    421         for(int j = 0; j < n; j ++)
    422         {
    423             double tp;
    424             //逆时针时为 >,顺时针则相反
    425             while((tp = Point::xmult(_Off.pt[i + 1],pt[j], pt[j + 1]) - Point::xmult(_Off.pt[i], pt[j], pt[j + 1])) > eps)
    426                 i = (i + 1) % _Off.n;
    427             //(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
    428             ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i], true));
    429             ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));
    430             if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断
    431             {
    432                 ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));
    433                 ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));
    434             }
    435         }
    436         return ret;
    437     }
    438 
    439     //-----------半平面交-------------
    440     //复杂度:O(nlog2(n))
    441     //#include <algorithm>
    442     //半平面计算极角函数[如果考虑效率可以用成员变量记录]
    443     static double hpc_pa(const Line &_Off)
    444     {
    445         return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x);
    446     }
    447     //半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边]
    448     static bool hpc_cmp(const Line &l, const Line &r)
    449     {
    450         double lp = hpc_pa(l), rp = hpc_pa(r);
    451         if(fabs(lp - rp) > eps)
    452             return lp < rp;
    453         return Point::xmult(r.s,l.s, r.e) < -eps;
    454     }
    455     static int judege(const Line &_lx,const Line &_ly,const Line &_lz)
    456     {
    457         Point tmp;
    458         Line::crossLPt(_lx,_ly,tmp);
    459         return Point::sgn(Point::xmult(_lz.s,tmp,_lz.e),0);
    460     }
    461     //获取半平面交的多边形(多边形的核)
    462     //参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
    463     //函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
    464     Polygon& halfPanelCross(Line _Off[], int ln)
    465     {
    466         Line dequeue[maxpn];//用于计算的双端队列
    467         int i, tn;
    468         sort(_Off, _Off + ln, hpc_cmp);
    469         //平面在向量左边的筛选
    470         for(i = tn = 1; i < ln; i ++)
    471             if(fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps)
    472                 _Off[tn ++] = _Off[i];
    473         ln = tn,n = 0;
    474         int bot = 0, top = 1;
    475         dequeue[0] = _Off[0];
    476         dequeue[1] = _Off[1];
    477         for(i = 2; i < ln; i ++)
    478         {
    479             while(bot < top &&  Polygon::judege(dequeue[top],dequeue[top-1],_Off[i]) > 0)
    480                 top --;
    481             while(bot < top &&  Polygon::judege(dequeue[bot],dequeue[bot+1],_Off[i]) > 0)
    482                 bot ++;
    483             dequeue[++ top] = _Off[i];
    484         }
    485 
    486         while(bot < top && Polygon::judege(dequeue[top],dequeue[top-1],dequeue[bot]) > 0)
    487             top --;
    488         while(bot < top && Polygon::judege(dequeue[bot],dequeue[bot+1],dequeue[top]) > 0)
    489             bot ++;
    490         //计算交点(注意不同直线形成的交点可能重合)
    491         if(top <= bot + 1)
    492             return (*this);
    493         for(i = bot; i < top; i ++)
    494             Line::crossLPt(dequeue[i],dequeue[i + 1],pt[n++]);
    495         if(bot < top + 1)
    496             Line::crossLPt(dequeue[bot],dequeue[top],pt[n++]);
    497         return (*this);
    498     }
    499 };
    500 
    501 int n,t;
    502 Point pt[2000];
    503 Line ln[2000];
    504 Polygon ans;
    505 int main(void)
    506 {
    507     scanf("%d",&t);
    508     while(t--)
    509     {
    510         scanf("%d",&n);
    511         for(int i=0;i<n;i++)
    512             scanf("%lf%lf",&pt[i].x,&pt[i].y);
    513         pt[n++]=pt[0];
    514         for(int i=n-1;i;i--)
    515             ln[i-1]=Line(pt[i],pt[i-1]);
    516         //for(int i=0;i<n-1;i++)
    517         //    printf("%.2f %.2f %.2f %.2f
    ",ln[i].s.x,ln[i].s.y,ln[i].e.x,ln[i].e.y);
    518         ans.halfPanelCross(ln,n-1);
    519         double area=0;
    520         if(ans.n==0)
    521             area=0;
    522         else
    523             area=ans.area();
    524         printf("%.2f
    ",area);
    525     }
    526     return 0;
    527 }
  • 相关阅读:
    如何将Oracle安装为Linux服务
    cp | mv | rm
    scp命令
    【读书笔记】深入理解计算机系统:第一章——计算机系统漫游
    微信小程序笔记(3):小程序的生命周期及其相关函数
    微信小程序笔记(2):wxml相比于html的扩展
    微信小程序笔记(1):小程序的代码构成和目录文件结构
    [C/C++]const限定符总结
    整数的表示与编码
    关于补码的由来和作用
  • 原文地址:https://www.cnblogs.com/weeping/p/6373353.html
Copyright © 2011-2022 走看看