zoukankan      html  css  js  c++  java
  • 2017 Multi-University Training Contest

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6070

    题面:

    Dirt Ratio

    Time Limit: 18000/9000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
    Total Submission(s): 1599    Accepted Submission(s): 740
    Special Judge


    Problem Description
    In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the following way. First let's ignore all the problems the team didn't pass, assume the team passed Xproblems during the contest, and submitted Y times for these problems, then the ''Dirt Ratio'' is measured as XY. If the ''Dirt Ratio'' of a team is too low, the team tends to cause more penalty, which is not a good performance.



    Picture from MyICPC


    Little Q is a coach, he is now staring at the submission list of a team. You can assume all the problems occurred in the list was solved by the team during the contest. Little Q calculated the team's low ''Dirt Ratio'', felt very angry. He wants to have a talk with them. To make the problem more serious, he wants to choose a continuous subsequence of the list, and then calculate the ''Dirt Ratio'' just based on that subsequence.

    Please write a program to find such subsequence having the lowest ''Dirt Ratio''.
     
    Input
    The first line of the input contains an integer T(1T15), denoting the number of test cases.

    In each test case, there is an integer n(1n60000) in the first line, denoting the length of the submission list.

    In the next line, there are n positive integers a1,a2,...,an(1ain), denoting the problem ID of each submission.
     
    Output
    For each test case, print a single line containing a floating number, denoting the lowest ''Dirt Ratio''. The answer must be printed with an absolute error not greater than 104.
     
    Sample Input
    1 5 1 2 1 2 3
     
    Sample Output
    0.5000000000
    Hint
    For every problem, you can assume its final submission is accepted.
     
    思路:
      分数规划的思想:二分答案,然后check。
      check:dif(l,r)/(r-l+1)<=mid (dif(l,r)区间[l,r]的不同数个数)
      这个形式很难在短时间内check,所以考虑等式变形。
      变形成==》dif(l,r)+l*mid<=(r+1)*mid
      在这种形式下可以通过枚举r,然后线段数维护左边的值。对于新加入的一个数,会在区间[pre[x],x]内贡献1,所以进行区间更新即可。
      具体见代码:
     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-8;
    10 const double pi=acos(-1.0);
    11 const int K=6e4+7;
    12 const int mod=1e9+7;
    13 
    14 int n,a[K],pre[K],b[K];
    15 double v[4*K],lz[4*K];
    16 void push_down(int o)
    17 {
    18     v[o<<1]+=lz[o],v[o<<1|1]+=lz[o];
    19     lz[o<<1]+=lz[o],lz[o<<1|1]+=lz[o];
    20     lz[o]=0;
    21 }
    22 double update(int o,int l,int r,int pos,double x)
    23 {
    24     if(l==r) return v[o]=x;
    25     int mid=l+r>>1;
    26     push_down(o);
    27     if(pos<=mid) update(o<<1,l,mid,pos,x);
    28     else update(o<<1|1,mid+1,r,pos,x);
    29     v[o]=min(v[o<<1],v[o<<1|1]);
    30 }
    31 double update2(int o,int l,int r,int nl,int nr,double x)
    32 {
    33     if(l==nl && r==nr) return v[o]+=x,lz[o]+=x;
    34     int mid=l+r>>1;
    35     push_down(o);
    36     if(nr<=mid) update2(o<<1,l,mid,nl,nr,x);
    37     else if(nl>mid) update2(o<<1|1,mid+1,r,nl,nr,x);
    38     else update2(o<<1,l,mid,nl,mid,x),update2(o<<1|1,mid+1,r,mid+1,nr,x);
    39     v[o]=min(v[o<<1],v[o<<1|1]);
    40 }
    41 bool check(double mid)
    42 {
    43     for(int i=1,mx=n*4;i<=mx;i++) v[i]=1e9,lz[i]=0;
    44     for(int i=1;i<=n;i++)
    45     {
    46         update(1,1,n,i,i*mid);
    47         update2(1,1,n,pre[i]+1,i,1.0);
    48         if(v[1]<(i+1)*mid+eps)    return 1;
    49     }
    50     return 0;
    51 }
    52 int main(void)
    53 {
    54     int t;cin>>t;
    55     while(t--)
    56     {
    57         scanf("%d",&n);
    58         memset(b,0,sizeof b);
    59         for(int i=1;i<=n;i++) scanf("%d",a+i),pre[i]=b[a[i]],b[a[i]]=i;
    60         double l=0,r=1;
    61         for(int i=1;i<=14;i++)
    62         {
    63             double mid=(l+r)/2.0;
    64             if(check(mid)) r=mid;
    65             else l=mid;
    66         }
    67         printf("%.6f
    ",l);
    68     }
    69     return 0;
    70 }
  • 相关阅读:
    DELPHI中应用GoogleMap[转]
    给DBGrid添加鼠标滚动事件
    枚举和卸载消息钩子[转]
    区域性名称和标识符
    VCL 中的 Windows API 函数: AlphaBlend
    高效读书,实用阅读指南
    defaultservlethandler不生效原因,springmvc静态资源拦截方案比较
    indexOf原理,Java,javascript,python实现
    可见性是什么?(通俗易懂)
    我们一起学程序五子棋
  • 原文地址:https://www.cnblogs.com/weeping/p/7291971.html
Copyright © 2011-2022 走看看