zoukankan      html  css  js  c++  java
  • XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem L. Canonical duel

    题目:Problem L. Canonical duel
    Input file: standard input
    Output file: standard output
    Time limit: 2 seconds
    Memory limit: 256 megabytes
    In the game «Canonical duel» board N × M is used. Some of the cells of the board contain turrets. A
    turret is the unit with four cannons oriented to north, east, south and west. Each turret can shoot exactly
    once. When turret is hit by the cannon of another turret, its activated. When turret is activated, all four
    cannons shoot simultaneously, then self-destruction process causes the turret to disappear.
    Given the board with some turrets. You may add exactly one turret on one of cells which does not
    contains a turret and activate this new turret. Your goal is to destroy maximum number of turrets.
    Input
    First line of the input contains two positive integers N and M, does not exceeding 2000 — size of the
    board.
    Each of the next N lines contain exactly M chars: ‘+’ denotes that cell is occupied by a turret, and ‘.
    that cell is empty.
    Output
    In the first line print maximum number of existing turrets you may destroy, then in second line print two
    space-separated integers — row and column of place where turret can be set. If it is impossible to destroy
    ever one turret in such a way, print only one line containing a zero; if several solutions exist, print any of
    them.
    Examples

    standard input standard output
    3 4
    ++..
    +...
    ..++
    5
    2 4
    4 5
    ++...
    ..+..
    ....+
    ...++
    5
    4 1
    3 3
    +++
    +++
    +++
    0


    思路:

      用并查集维护每个点所能炸的点数量,然后处理出每个空位置上下左右最近的炮台的位置。之后枚举放置位置即可。

      

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-8;
    10 const double pi=acos(-1.0);
    11 const int K=1e6+7;
    12 const int mod=1e9+7;
    13 
    14 char ss[2005][2005];
    15 int n,m,ans,ansx,ansy,f[4001000],cnt[4001000];
    16 int dir[4001000][5],vis[4001000];
    17 int idx(int i,int j)
    18 {
    19     if(i<1||j<1||i>n||j>m) return 0;
    20     return (i-1)*m+j;
    21 }
    22 int fd(int x)
    23 {
    24     return f[x]==x?x:f[x]=fd(f[x]);
    25 }
    26 void join(int y,int x)
    27 {
    28     int fx=fd(x),fy=fd(y);
    29     if(fx!=fy)
    30         f[fy]=fx,cnt[fx]+=cnt[fy];
    31 }
    32 int main(void)
    33 {
    34     scanf("%d%d",&n,&m);
    35     for(int i=1;i<=n;i++)
    36         scanf("%s",&ss[i][1]);
    37     for(int i=1;i<=n;i++)
    38     for(int j=1;j<=m;j++)
    39         f[idx(i,j)]=idx(i,j),cnt[idx(i,j)]=ss[i][j]=='+';
    40     for(int i=1;i<=n;i++)
    41     for(int j=1;j<=m;j++)
    42     {
    43         dir[idx(i,j)][1]=ss[i-1][j]=='+'?idx(i-1,j):dir[idx(i-1,j)][1];
    44         dir[idx(i,j)][3]=ss[i][j-1]=='+'?idx(i,j-1):dir[idx(i,j-1)][3];
    45     }
    46     for(int i=n;i;i--)
    47     for(int j=m;j;j--)
    48     {
    49         dir[idx(i,j)][2]=ss[i+1][j]=='+'?idx(i+1,j):dir[idx(i+1,j)][2];
    50         dir[idx(i,j)][4]=ss[i][j+1]=='+'?idx(i,j+1):dir[idx(i,j+1)][4];
    51     }
    52     for(int i=1;i<=n;i++)
    53     for(int j=1;j<=m;j++)
    54     if(ss[i][j]=='+')
    55     {
    56         if(dir[idx(i,j)][1]) join(idx(i,j),dir[idx(i,j)][1]);
    57         if(dir[idx(i,j)][3]) join(idx(i,j),dir[idx(i,j)][3]);
    58         //printf("f[%d][%d]:%d
    ",i,j,f[idx(i,j)]);
    59     }
    60 //    for(int i=1;i<=n;i++)
    61 //    for(int j=1;j<=m;j++)
    62 //    {
    63 //        printf("dir[%d][%d]:",i,j);
    64 //        for(int k=1;k<=4;k++)
    65 //        printf("%d ",dir[idx(i,j)][k]);
    66 //        printf("
    ");
    67 //    }
    68 //    for(int i=1;i<=n;i++)
    69 //    for(int j=1;j<=m;j++)
    70 //    if(f[idx(i,j)]==idx(i,j))
    71 //        printf("cnt[%d][%d]:%d
    ",i,j,cnt[idx(i,j)]);
    72     for(int i=1;i<=n;i++)
    73     for(int j=1;j<=m;j++)
    74     if(ss[i][j]=='.')
    75     {
    76         int sum=0;
    77         for(int k=1;k<=4;k++)
    78         if(!vis[fd(dir[idx(i,j)][k])])
    79             vis[fd(dir[idx(i,j)][k])]=1,sum+=cnt[fd(dir[idx(i,j)][k])];
    80         for(int k=1;k<=4;k++)
    81             vis[fd(dir[idx(i,j)][k])]=0;
    82         //printf("sum:%d %d %d
    ",i,j,sum);
    83         if(sum>ans)
    84             ans=sum,ansx=i,ansy=j;
    85     }
    86     if(ans) printf("%d
    %d %d
    ",ans,ansx,ansy);
    87     else printf("0
    ");
    88     return 0;
    89 }
  • 相关阅读:
    spicy及remote-viewer登录方法
    1000: 恶意IP 课程作业
    一种快速找数的方法
    基数排序c++实现
    二叉排序树的实现
    sicily 数据结构 1014. Translation
    堆排序实现
    插入排序实现--直接实现,二分插入实现
    希尔排序--改进的插入排序
    归并排序--较快的算法之一
  • 原文地址:https://www.cnblogs.com/weeping/p/7291990.html
Copyright © 2011-2022 走看看