zoukankan      html  css  js  c++  java
  • poj2954 Triangle

    地址:http://poj.org/problem?id=2954

    题目:

    Triangle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6006   Accepted: 2576

    Description

    lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

    Input

    The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 = x2 = y2 = x3y3 = 0 and should not be processed.

    Output

    For each input case, the program should print the number of internal lattice points on a single line.

    Sample Input

    0 0 1 0 0 1
    0 0 5 0 0 5
    0 0 0 0 0 0

    Sample Output

    0
    6

    Source

     
    思路:
      pick定理:对于格点多边形(所有的顶点均在格点上的多边形),其面积公式 2*S = 2*a + b - 2 (其中b为在边上的格点数,a为在多边形内部的格点数)
      端点在格点上的线段穿过的格点数:gcd(abs(pe.x-ps.x),abs(pe.y-ps.y))+1
      也就是说在线段ps,pe上,除了起点ps外经过的格点数。
     1 #include <cstdio>
     2 #include <cmath>
     3 #include <algorithm>
     4 
     5 using namespace std;
     6 
     7 #define MP make_pair
     8 #define PB push_back
     9 typedef long long LL;
    10 typedef pair<int,int> PII;
    11 const double eps=1e-8;
    12 const double pi=acos(-1.0);
    13 const int K=1e6+7;
    14 const int mod=1e9+7;
    15 
    16 int x[5],y[5];
    17 
    18 int main(void)
    19 {
    20     while(1)
    21     {
    22         int ff=0;
    23         for(int i=0;i<3;i++)
    24             scanf("%d%d",x+i,y+i),ff+=!y[i]&&!x[i];
    25         if(ff==3)break;
    26         int cnt=0,s=(x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);
    27         for(int i=0;i<3;i++)
    28             cnt+=__gcd(abs(x[(i+1)%3]-x[i]),abs(y[(i+1)%3]-y[i]));
    29         printf("%d
    ",(abs(s)+2-cnt)/2);
    30     }
    31     return 0;
    32 }
  • 相关阅读:
    【2017下长沙学院软工3班_助教博客】 第一次作业成绩公示
    《构建之法》读书笔记第3章
    《构建之法》读书笔记第1、2章
    【2017下集美大学软件工程1413软工实践_助教博客】 第0次作业成绩公示
    软件工程——构建之法高分Tips
    第09组 Alpha冲刺(1/6)
    2019 SDN上机第2次作业
    第09组 团队Git现场编程实战
    2019 SDN上机第一次作业
    第09组 团队项目-需求分析报告
  • 原文地址:https://www.cnblogs.com/weeping/p/7637960.html
Copyright © 2011-2022 走看看