zoukankan      html  css  js  c++  java
  • poj2954 Triangle

    地址:http://poj.org/problem?id=2954

    题目:

    Triangle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6006   Accepted: 2576

    Description

    lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

    Input

    The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 = x2 = y2 = x3y3 = 0 and should not be processed.

    Output

    For each input case, the program should print the number of internal lattice points on a single line.

    Sample Input

    0 0 1 0 0 1
    0 0 5 0 0 5
    0 0 0 0 0 0

    Sample Output

    0
    6

    Source

     
    思路:
      pick定理:对于格点多边形(所有的顶点均在格点上的多边形),其面积公式 2*S = 2*a + b - 2 (其中b为在边上的格点数,a为在多边形内部的格点数)
      端点在格点上的线段穿过的格点数:gcd(abs(pe.x-ps.x),abs(pe.y-ps.y))+1
      也就是说在线段ps,pe上,除了起点ps外经过的格点数。
     1 #include <cstdio>
     2 #include <cmath>
     3 #include <algorithm>
     4 
     5 using namespace std;
     6 
     7 #define MP make_pair
     8 #define PB push_back
     9 typedef long long LL;
    10 typedef pair<int,int> PII;
    11 const double eps=1e-8;
    12 const double pi=acos(-1.0);
    13 const int K=1e6+7;
    14 const int mod=1e9+7;
    15 
    16 int x[5],y[5];
    17 
    18 int main(void)
    19 {
    20     while(1)
    21     {
    22         int ff=0;
    23         for(int i=0;i<3;i++)
    24             scanf("%d%d",x+i,y+i),ff+=!y[i]&&!x[i];
    25         if(ff==3)break;
    26         int cnt=0,s=(x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);
    27         for(int i=0;i<3;i++)
    28             cnt+=__gcd(abs(x[(i+1)%3]-x[i]),abs(y[(i+1)%3]-y[i]));
    29         printf("%d
    ",(abs(s)+2-cnt)/2);
    30     }
    31     return 0;
    32 }
  • 相关阅读:
    米洛个人修炼术:导致上班累成狗的三大主因
    米洛个人修炼术:如何倍增你的功力修行速度达成健康体魄
    米洛个人修炼术:注意这三方面,天天都早起
    米洛个人修炼术:情绪的四种常用处理方式,其实都是有问题的
    好公司和差公司的对比
    课程作业二
    课程作业一
    作业四
    寒假作业三
    寒假作业二
  • 原文地址:https://www.cnblogs.com/weeping/p/7637960.html
Copyright © 2011-2022 走看看