zoukankan      html  css  js  c++  java
  • poj1106 Transmitters

    地址:http://poj.org/problem?id=1106

    题目:

    Transmitters
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5405   Accepted: 2873

    Description

    In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle. 

    A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations. 

    All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter. 

    Input

    Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

    Output

    For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle.

    Sample Input

    25 25 3.5
    7
    25 28
    23 27
    27 27
    24 23
    26 23
    24 29
    26 29
    350 200 2.0
    5
    350 202
    350 199
    350 198
    348 200
    352 200
    995 995 10.0
    4
    1000 1000
    999 998
    990 992
    1000 999
    100 100 -2.5

    Sample Output

    3
    4
    4

    Source

    思路:

      直接枚举

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <algorithm>
     5 
     6 
     7 using namespace std;
     8 const double PI = acos(-1.0);
     9 const double eps = 1e-10;
    10 
    11 /****************常用函数***************/
    12 //判断ta与tb的大小关系
    13 int sgn( double ta, double tb)
    14 {
    15     if(fabs(ta-tb)<eps)return 0;
    16     if(ta<tb)   return -1;
    17     return 1;
    18 }
    19 
    20 //
    21 class Point
    22 {
    23 public:
    24 
    25     double x, y;
    26 
    27     Point(){}
    28     Point( double tx, double ty){ x = tx, y = ty;}
    29 
    30     bool operator < (const Point &_se) const
    31     {
    32         return x<_se.x || (x==_se.x && y<_se.y);
    33     }
    34     friend Point operator + (const Point &_st,const Point &_se)
    35     {
    36         return Point(_st.x + _se.x, _st.y + _se.y);
    37     }
    38     friend Point operator - (const Point &_st,const Point &_se)
    39     {
    40         return Point(_st.x - _se.x, _st.y - _se.y);
    41     }
    42     //点位置相同(double类型)
    43     bool operator == (const Point &_off)const
    44     {
    45         return  sgn(x, _off.x) == 0 && sgn(y, _off.y) == 0;
    46     }
    47 
    48 };
    49 
    50 /****************常用函数***************/
    51 //点乘
    52 double dot(const Point &po,const Point &ps,const Point &pe)
    53 {
    54     return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
    55 }
    56 //叉乘
    57 double xmult(const Point &po,const Point &ps,const Point &pe)
    58 {
    59     return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
    60 }
    61 //两点间距离的平方
    62 double getdis2(const Point &st,const Point &se)
    63 {
    64     return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
    65 }
    66 //两点间距离
    67 double getdis(const Point &st,const Point &se)
    68 {
    69     return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
    70 }
    71 
    72 Point pt[200],cr;
    73 double r;
    74 int main(void)
    75 {
    76     while(~scanf("%lf%lf%lf",&cr.x,&cr.y,&r))
    77     {
    78         if(sgn(r,0)<0) break;
    79         int n,ans=0;
    80         scanf("%d",&n);
    81         r*=r;
    82         for(int i=1;i<=n;i++)
    83             scanf("%lf%lf",&pt[i].x,&pt[i].y);
    84         for(int i=1;i<=n;i++)
    85         if(sgn(getdis2(cr,pt[i]),r)<=0)
    86         {
    87             int cnt=1;
    88             for(int j=1;j<=n;j++)
    89             if(i!=j && sgn(getdis2(cr,pt[j]),r)<=0 && sgn(xmult(cr,pt[i],pt[j]),0)>=0)
    90                 cnt++;
    91             ans=max(ans,cnt);
    92         }
    93         printf("%d
    ",ans);
    94     }
    95     return 0;
    96 }
  • 相关阅读:
    jsp+servlet实现的验证登陆
    Servlet转发
    ServletContext的使用
    Servlet获取配置信息(ServletConfig)
    Servlet线程安全问题(转载)
    编程式导航
    声明式导航
    Vue Router
    路由
    vue-cli 单文件组件 工具安装
  • 原文地址:https://www.cnblogs.com/weeping/p/7653168.html
Copyright © 2011-2022 走看看