zoukankan      html  css  js  c++  java
  • poj1673 EXOCENTER OF A TRIANGLE

    地址:http://poj.org/problem?id=1673

    题目:

    EXOCENTER OF A TRIANGLE
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 3637   Accepted: 1467

    Description

    Given a triangle ABC, the Extriangles of ABC are constructed as follows: 
    On each side of ABC, construct a square (ABDE, BCHJ and ACFG in the figure below). 
    Connect adjacent square corners to form the three Extriangles (AGD, BEJ and CFH in the figure). 
    The Exomedians of ABC are the medians of the Extriangles, which pass through vertices of the original triangle,extended into the original triangle (LAO, MBO and NCO in the figure. As the figure indicates, the three Exomedians intersect at a common point called the Exocenter (point O in the figure). 
    This problem is to write a program to compute the Exocenters of triangles. 

    Input

    The first line of the input consists of a positive integer n, which is the number of datasets that follow. Each dataset consists of 3 lines; each line contains two floating point values which represent the (two -dimensional) coordinate of one vertex of a triangle. So, there are total of (n*3) + 1 lines of input. Note: All input triangles wi ll be strongly non-degenerate in that no vertex will be within one unit of the line through the other two vertices.

    Output

    For each dataset you must print out the coordinates of the Exocenter of the input triangle correct to four decimal places.

    Sample Input

    2
    0.0 0.0
    9.0 12.0
    14.0 0.0
    3.0 4.0
    13.0 19.0
    2.0 -10.0

    Sample Output

    9.0000 3.7500
    -48.0400 23.3600

    Source

     
    思路:
      其实就是重心。
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cmath>
      4 #include <algorithm>
      5 
      6 
      7 using namespace std;
      8 const double PI = acos(-1.0);
      9 const double eps = 1e-10;
     10 
     11 /****************常用函数***************/
     12 //判断ta与tb的大小关系
     13 int sgn( double ta, double tb)
     14 {
     15     if(fabs(ta-tb)<eps)return 0;
     16     if(ta<tb)   return -1;
     17     return 1;
     18 }
     19 
     20 //
     21 class Point
     22 {
     23 public:
     24 
     25     double x, y;
     26 
     27     Point(){}
     28     Point( double tx, double ty){ x = tx, y = ty;}
     29 
     30     bool operator < (const Point &_se) const
     31     {
     32         return x<_se.x || (x==_se.x && y<_se.y);
     33     }
     34     friend Point operator + (const Point &_st,const Point &_se)
     35     {
     36         return Point(_st.x + _se.x, _st.y + _se.y);
     37     }
     38     friend Point operator - (const Point &_st,const Point &_se)
     39     {
     40         return Point(_st.x - _se.x, _st.y - _se.y);
     41     }
     42     //点位置相同(double类型)
     43     bool operator == (const Point &_off)const
     44     {
     45         return  sgn(x, _off.x) == 0 && sgn(y, _off.y) == 0;
     46     }
     47 
     48 };
     49 
     50 /****************常用函数***************/
     51 //点乘
     52 double dot(const Point &po,const Point &ps,const Point &pe)
     53 {
     54     return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
     55 }
     56 //叉乘
     57 double xmult(const Point &po,const Point &ps,const Point &pe)
     58 {
     59     return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
     60 }
     61 //两点间距离的平方
     62 double getdis2(const Point &st,const Point &se)
     63 {
     64     return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
     65 }
     66 //两点间距离
     67 double getdis(const Point &st,const Point &se)
     68 {
     69     return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
     70 }
     71 
     72 //两点表示的向量
     73 class Line
     74 {
     75 public:
     76 
     77     Point s, e;//两点表示,起点[s],终点[e]
     78     double a, b, c;//一般式,ax+by+c=0
     79     double angle;//向量的角度,[-pi,pi]
     80 
     81     Line(){}
     82     Line( Point ts, Point te):s(ts),e(te){}//get_angle();}
     83     Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){}
     84 
     85     //排序用
     86     bool operator < (const Line &ta)const
     87     {
     88         return angle<ta.angle;
     89     }
     90     //向量与向量的叉乘
     91     friend double operator / ( const Line &_st, const  Line &_se)
     92     {
     93         return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
     94     }
     95     //向量间的点乘
     96     friend double operator *( const Line &_st, const  Line &_se)
     97     {
     98         return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
     99     }
    100     //从两点表示转换为一般表示
    101     //a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
    102     bool pton()
    103     {
    104         a = e.y - s.y;
    105         b = s.x - e.x;
    106         c = e.x * s.y - e.y * s.x;
    107         return true;
    108     }
    109     //半平面交用
    110     //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
    111     friend bool operator < (const Point &_Off, const Line &_Ori)
    112     {
    113         return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
    114             < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
    115     }
    116     //求直线或向量的角度
    117     double get_angle( bool isVector = true)
    118     {
    119         angle = atan2( e.y - s.y, e.x - s.x);
    120         if(!isVector && angle < 0)
    121             angle += PI;
    122         return angle;
    123     }
    124 
    125     //点在线段或直线上 1:点在直线上 2点在s,e所在矩形内
    126     bool has(const Point &_Off, bool isSegment = false) const
    127     {
    128         bool ff = sgn( xmult( s, e, _Off), 0) == 0;
    129         if( !isSegment) return ff;
    130         return ff
    131             && sgn(_Off.x - min(s.x, e.x), 0) >= 0 && sgn(_Off.x - max(s.x, e.x), 0) <= 0
    132             && sgn(_Off.y - min(s.y, e.y), 0) >= 0 && sgn(_Off.y - max(s.y, e.y), 0) <= 0;
    133     }
    134 
    135     //点到直线/线段的距离
    136     double dis(const Point &_Off, bool isSegment = false)
    137     {
    138         ///化为一般式
    139         pton();
    140         //到直线垂足的距离
    141         double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
    142         //如果是线段判断垂足
    143         if(isSegment)
    144         {
    145             double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
    146             double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
    147             double xb = max(s.x, e.x);
    148             double yb = max(s.y, e.y);
    149             double xs = s.x + e.x - xb;
    150             double ys = s.y + e.y - yb;
    151            if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
    152                 td = min( getdis(_Off,s), getdis(_Off,e));
    153         }
    154         return fabs(td);
    155     }
    156 
    157     //关于直线对称的点
    158     Point mirror(const Point &_Off)
    159     {
    160         ///注意先转为一般式
    161         Point ret;
    162         double d = a * a + b * b;
    163         ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
    164         ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
    165         return ret;
    166     }
    167     //计算两点的中垂线
    168     static Line ppline(const Point &_a,const Point &_b)
    169     {
    170         Line ret;
    171         ret.s.x = (_a.x + _b.x) / 2;
    172         ret.s.y = (_a.y + _b.y) / 2;
    173         //一般式
    174         ret.a = _b.x - _a.x;
    175         ret.b = _b.y - _a.y;
    176         ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
    177         //两点式
    178         if(fabs(ret.a) > eps)
    179         {
    180             ret.e.y = 0.0;
    181             ret.e.x = - ret.c / ret.a;
    182             if(ret.e == ret. s)
    183             {
    184                 ret.e.y = 1e10;
    185                 ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
    186             }
    187         }
    188         else
    189         {
    190             ret.e.x = 0.0;
    191             ret.e.y = - ret.c / ret.b;
    192             if(ret.e == ret. s)
    193             {
    194                 ret.e.x = 1e10;
    195                 ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
    196             }
    197         }
    198         return ret;
    199     }
    200 
    201     //------------直线和直线(向量)-------------
    202     //向量向左边平移t的距离
    203     Line& moveLine( double t)
    204     {
    205         Point of;
    206         of = Point( -( e.y - s.y), e.x - s.x);
    207         double dis = sqrt( of.x * of.x + of.y * of.y);
    208         of.x= of.x * t / dis, of.y = of.y * t / dis;
    209         s = s + of, e = e + of;
    210         return *this;
    211     }
    212     //直线重合
    213     static bool equal(const Line &_st,const Line &_se)
    214     {
    215         return _st.has( _se.e) && _se.has( _st.s);
    216     }
    217     //直线平行
    218     static bool parallel(const Line &_st,const Line &_se)
    219     {
    220         return sgn( _st / _se, 0) == 0;
    221     }
    222     //两直线(线段)交点
    223     //返回-1代表平行,0代表重合,1代表相交
    224     static bool crossLPt(const Line &_st,const Line &_se, Point &ret)
    225     {
    226         if(parallel(_st,_se))
    227         {
    228             if(Line::equal(_st,_se)) return 0;
    229             return -1;
    230         }
    231         ret = _st.s;
    232         double t = ( Line(_st.s,_se.s) / _se) / ( _st / _se);
    233         ret.x += (_st.e.x - _st.s.x) * t;
    234         ret.y += (_st.e.y - _st.s.y) * t;
    235         return 1;
    236     }
    237     //------------线段和直线(向量)----------
    238     //直线和线段相交
    239     //参数:直线[_st],线段[_se]
    240     friend bool crossSL( Line &_st, Line &_se)
    241     {
    242         return sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.e), 0) >= 0;
    243     }
    244 
    245     //判断线段是否相交(注意添加eps)
    246     static bool isCrossSS( const Line &_st, const  Line &_se)
    247     {
    248         //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
    249         //2.跨立试验(等于0时端点重合)
    250         return
    251             max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
    252             max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
    253             max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
    254             max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
    255             sgn( xmult( _se.s, _st.s, _se.e) * xmult( _se.s, _se.e, _st.s), 0) >= 0 &&
    256             sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.s), 0) >= 0;
    257     }
    258 };
    259 
    260 //寻找凸包的graham 扫描法所需的排序函数
    261 Point gsort;
    262 bool gcmp( const Point &ta, const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
    263 {
    264     double tmp = xmult( gsort, ta, tb);
    265     if( fabs( tmp) < eps)
    266         return getdis( gsort, ta) < getdis( gsort, tb);
    267     else if( tmp > 0)
    268         return 1;
    269     return 0;
    270 }
    271 
    272 
    273 
    274 class triangle
    275 {
    276 public:
    277     Point a, b, c;//顶点
    278     triangle(){}
    279     triangle(Point a, Point b, Point c): a(a), b(b), c(c){}
    280 
    281     //计算三角形面积
    282     double area()
    283     {
    284         return fabs( xmult(a, b, c)) / 2.0;
    285     }
    286 
    287     //计算三角形外心
    288     //返回:外接圆圆心
    289     Point circumcenter()
    290     {
    291         double pa = a.x * a.x + a.y * a.y;
    292         double pb = b.x * b.x + b.y * b.y;
    293         double pc = c.x * c.x + c.y * c.y;
    294         double ta = pa * ( b.y - c.y) - pb * ( a.y - c.y) + pc * ( a.y - b.y);
    295         double tb = -pa * ( b.x - c.x) + pb * ( a.x - c.x) - pc * ( a.x - b.x);
    296         double tc = a.x * ( b.y - c.y) - b.x * ( a.y - c.y) + c.x * ( a.y - b.y);
    297         return Point( ta / 2.0 / tc, tb / 2.0 / tc);
    298     }
    299 
    300     //计算三角形内心
    301     //返回:内接圆圆心
    302     Point incenter()
    303     {
    304         Line u, v;
    305         double m, n;
    306         u.s = a;
    307         m = atan2(b.y - a.y, b.x - a.x);
    308         n = atan2(c.y - a.y, c.x - a.x);
    309         u.e.x = u.s.x + cos((m + n) / 2);
    310         u.e.y = u.s.y + sin((m + n) / 2);
    311         v.s = b;
    312         m = atan2(a.y - b.y, a.x - b.x);
    313         n = atan2(c.y - b.y, c.x - b.x);
    314         v.e.x = v.s.x + cos((m + n) / 2);
    315         v.e.y = v.s.y + sin((m + n) / 2);
    316         Point ret;
    317         Line::crossLPt(u,v,ret);
    318         return ret;
    319     }
    320 
    321     //计算三角形垂心
    322     //返回:高的交点
    323     Point perpencenter()
    324     {
    325         Line u,v;
    326         u.s = c;
    327         u.e.x = u.s.x - a.y + b.y;
    328         u.e.y = u.s.y + a.x - b.x;
    329         v.s = b;
    330         v.e.x = v.s.x - a.y + c.y;
    331         v.e.y = v.s.y + a.x - c.x;
    332         Point ret;
    333         Line::crossLPt(u,v,ret);
    334         return ret;
    335     }
    336 
    337     //计算三角形重心
    338     //返回:重心
    339     //到三角形三顶点距离的平方和最小的点
    340     //三角形内到三边距离之积最大的点
    341     Point barycenter()
    342     {
    343         Line u,v;
    344         u.s.x = (a.x + b.x) / 2;
    345         u.s.y = (a.y + b.y) / 2;
    346         u.e = c;
    347         v.s.x = (a.x + c.x) / 2;
    348         v.s.y = (a.y + c.y) / 2;
    349         v.e = b;
    350         Point ret;
    351         Line::crossLPt(u,v,ret);
    352         return ret;
    353     }
    354 
    355     //计算三角形费马点
    356     //返回:到三角形三顶点距离之和最小的点
    357     Point fermentPoint()
    358     {
    359         Point u, v;
    360         double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
    361         int i, j, k;
    362         u.x = (a.x + b.x + c.x) / 3;
    363         u.y = (a.y + b.y + c.y) / 3;
    364         while (step > eps)
    365         {
    366             for (k = 0; k < 10; step /= 2, k ++)
    367             {
    368                 for (i = -1; i <= 1; i ++)
    369                 {
    370                     for (j =- 1; j <= 1; j ++)
    371                     {
    372                         v.x = u.x + step * i;
    373                         v.y = u.y + step * j;
    374                         if (getdis(u,a) + getdis(u,b) + getdis(u,c) > getdis(v,a) + getdis(v,b) + getdis(v,c))
    375                             u = v;
    376                     }
    377                 }
    378             }
    379         }
    380         return u;
    381     }
    382 };
    383 
    384 triangle tr;
    385 int main(void)
    386 {
    387     int n;
    388     scanf("%d",&n);
    389     while(n--)
    390     {
    391         scanf("%lf%lf%lf%lf%lf%lf",&tr.a.x,&tr.a.y,&tr.b.x,&tr.b.y,&tr.c.x,&tr.c.y);
    392         Point ans=tr.perpencenter();
    393         printf("%.4f %.4f
    ",ans.x,ans.y);
    394     }
    395     return 0;
    396 }
  • 相关阅读:
    react 常用问题总结
    vue 给element-UI库添加按需加载时启动项目时 babel-preset-es2015 报错
    前端使用 jquery.base64.js 进行加密、解密十分方便
    CommonJS规范与AMD/CMD规范总结
    彻底搞懂Websocket原理
    调用图灵API V2 遇到的坑
    前端html页面,手机查看
    关于原生js的节点兼容性
    数据类型检测方法
    一位大佬关于js去重问题的研究
  • 原文地址:https://www.cnblogs.com/weeping/p/7653187.html
Copyright © 2011-2022 走看看