A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 112228 | Accepted: 34905 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
题意就是如题,对线段树的区间进行更新,可增可减可修改,并查询区间和,此题就是增,具体实现看代码吧.
AC代码:
Source Code #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #define maxsize 100005 #define LL long long LL num[maxsize]; struct node { LL l,r; LL maxn,add; int mid() { return (l+r)/2; } } tree[maxsize<<2]; void Build_Tree(LL root,LL l,LL r) { tree[root].l=l; tree[root].r=r; tree[root].add=0; if(l==r) { tree[root].maxn=num[l]; return ; } Build_Tree(root*2,l,tree[root].mid()); Build_Tree(root*2+1,tree[root].mid()+1,r); tree[root].maxn=tree[root*2].maxn+tree[root*2+1].maxn; } void Update(LL root,LL l,LL r,LL czp) { if(tree[root].l==l&&tree[root].r==r) { tree[root].add+=czp; return ; } tree[root].maxn+=((r-l+1)*czp); if(tree[root].mid()>=r) Update(root<<1,l,r,czp); else if(tree[root].mid()<l) Update(root<<1|1,l,r,czp); else { Update(root<<1,l,tree[root].mid(),czp); Update(root<<1|1,tree[root].mid()+1,r,czp); } } long long Query(LL root,LL l,LL r) { if(tree[root].l==l&&tree[root].r==r) { return tree[root].maxn+(r-l+1)*tree[root].add; } tree[root].maxn+=(tree[root].r-tree[root].l+1)*tree[root].add; Update(root<<1,tree[root].l,tree[root].mid(),tree[root].add); Update(root<<1|1,tree[root].mid()+1,tree[root].r,tree[root].add); tree[root].add=0; if(tree[root].mid()>=r) return Query(root*2,l,r); else if(tree[root].mid()<l) return Query(root*2+1,l,r); else { LL Lans=Query(root*2,l,tree[root].mid()); LL Rans=Query(root*2+1,tree[root].mid()+1,r); return Lans+Rans; } } int main() { /*ios::sync_with_stdio(false);*/ char str[5]; LL m,n,a,b,c; while(scanf("%lld%lld",&m,&n)!=EOF) { for(LL i=1; i<=m; i++) scanf("%I64d",&num[i]); Build_Tree(1,1,m); for(LL i=1; i<=n; i++) { scanf("%s%I64d%I64d",str,&a,&b); if(str[0]=='Q') printf("%I64d ",Query(1,a,b)); else if(str[0]=='C') { scanf("%I64d",&c); Update(1,a,b,c); } } } return 0; }