zoukankan      html  css  js  c++  java
  • 吴恩达机器学习第5周Neural Networks(Cost Function and Backpropagation)

    5.1 Cost Function

    假设训练样本为:{(x1),y(1)),(x(2),y(2)),...(x(m),y(m))}

    L  = total no.of layers in network

    sL= no,of units(not counting bias unit) in layer L

    K = number of output units/classes

    如图所示的神经网络,L = 4,s1 = 3,s2 = 5,s3 = 5, s4 = 4

    逻辑回归的代价函数:

                

    神经网络的代价函数:

       

     5.2 反向传播算法 Backpropagation

     关于反向传播算法的一篇通俗的解释http://blog.csdn.net/shijing_0214/article/details/51923547

     

     5.3 Training a neural network

     

    隐藏层的单元数一般一样,隐藏层一般越多越好,但计算量会较大。

    Training a Neural Network

    1. Randomly initialize the weights
    2. Implement forward propagation to get hΘ(x(i)) for any x(i)
    3. Implement the cost function
    4. Implement backpropagation to compute partial derivatives
    5. Use gradient checking to confirm that your backpropagation works. Then disable gradient checking.
    6. Use gradient descent or a built-in optimization function to minimize the cost function with the weights in theta.
  • 相关阅读:
    Md5
    hdu 2569 彼岸
    调用系统相机相冊
    白盒測试
    HDU 1501
    IOS常见错误分析解决(一直更新) 你值得收藏-综合贴
    读“程序猿生存定律”笔记
    Halcon导出的cpp, VC++环境配置
    POJ 1260 Pearls (动规)
    hdoj-1856-More is better【并查集】
  • 原文地址:https://www.cnblogs.com/weiququ/p/8620107.html
Copyright © 2011-2022 走看看